/**@class android.graphics.ColorSpace.Adaptation
@extends java.lang.Enum

 {@usesMathJax}

 <p>List of adaptation matrices that can be used for chromatic adaptation
 using the von Kries transform. These matrices are used to convert values
 in the CIE XYZ space to values in the LMS space (Long Medium Short).</p>

 <p>Given an adaptation matrix \(A\), the conversion from XYZ to
 LMS is straightforward:</p>

 $$\left[ \begin{array}{c} L\\ M\\ S \end{array} \right] =
 A \left[ \begin{array}{c} X\\ Y\\ Z \end{array} \right]$$

 <p>The complete von Kries transform \(T\) uses a diagonal matrix
 noted \(D\) to perform the adaptation in LMS space. In addition
 to \(A\) and \(D\), the source white point \(W1\) and the destination
 white point \(W2\) must be specified:</p>

 $$\begin{align*}
 \left[ \begin{array}{c} L_1\\ M_1\\ S_1 \end{array} \right] &=
      A \left[ \begin{array}{c} W1_X\\ W1_Y\\ W1_Z \end{array} \right] \\\
 \left[ \begin{array}{c} L_2\\ M_2\\ S_2 \end{array} \right] &=
      A \left[ \begin{array}{c} W2_X\\ W2_Y\\ W2_Z \end{array} \right] \\\
 D &= \left[ \begin{matrix} \frac{L_2}{L_1} & 0 & 0 \\\
      0 & \frac{M_2}{M_1} & 0 \\\
      0 & 0 & \frac{S_2}{S_1} \end{matrix} \right] \\\
 T &= A^{-1}.D.A
 \end{align*}$$

 <p>As an example, the resulting matrix \(T\) can then be used to
 perform the chromatic adaptation of sRGB XYZ transform from D65
 to D50:</p>

 $$sRGB_{D50} = T.sRGB_{D65}$$

 @see ColorSpace.Connector
 @see ColorSpace#connect(ColorSpace, ColorSpace)
*/
var Adaptation = {

/** Bradford chromatic adaptation transform, as defined in the
 CIECAM97s color appearance model.
*/
BRADFORD : "null",
/** von Kries chromatic adaptation transform.
*/
VON_KRIES : "null",
/** CIECAT02 chromatic adaption transform, as defined in the
 CIECAM02 color appearance model.
*/
CIECAT02 : "null",
/**
*/
values : function(  ) {},

/**
*/
valueOf : function(  ) {},


};