Kony Reference Architecture SDK

APl Programmers' Guide

Release V8 SP4

Document Relevance and Accuracy

This document is considered relevant to the Release stated on this title page and the document version stated on the Revision History page.
Remember to always view and download the latest document version relevant to the software release you are using.

© 2019 by Kony, Inc. All rights reserved 1 0of92

Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Copyright © 2019 Kony, Inc.
Allrights reserved.
October, 2019

This document contains information proprietary to Kony, Inc., is bound by the Kony license
agreements, and may not be used except in the context of understanding the use and methods of
Kony, Inc., software without prior, express, written permission. Kony, Empowering Everywhere, Kony
Fabric, Kony Nitro, and Kony Visualizer are trademarks of Kony, Inc. MobileFabric is a registered
trademark of Kony, Inc. Microsoft, the Microsoft logo, Internet Explorer, Windows, and Windows Vista
are registered trademarks of Microsoft Corporation. Apple, the Apple logo, iTunes, iPhone, iPad, OS
X, Objective-C, Safari, Apple Pay, Apple Watch, and Xcode are trademarks or registered trademarks
of Apple, Inc. Google, the Google logo, Android, and the Android logo are registered trademarks of
Google, Inc. Chrome is a trademark of Google, Inc. BlackBerry, PlayBook, Research in Motion, and
RIM are registered trademarks of BlackBerry. SAP® and SAP® Business Suite® are registered
trademarks of SAP SE in Germany and in several other countries. All other terms, trademarks, or
service marks mentioned in this document have been capitalized and are to be considered the
property of their respective owners.

© 2019 by Kony, Inc. All rights reserved 20f92

Kony Reference Architecture Programmer's Guide

Revision History

Date Document Version Description of Releases and Updates
12/18/2017 1.1 Updated for release with Kony Visualizer V8 SP1.
09/21/2017 1.0 Updated for release with Kony Visualizer V8.

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 3 of 92

Kony Reference Architecture Programmer's Guide

Table of Contents

1. Kony Reference Architecture APl Programmers' Guide .. 6
2. OVeIVIBWS 7
2.1 Kony Reference Architecture: Decoded 8
2.2 Advantages of Using Kony Reference Architecture 11
2.3 A Deeper Look at Kony Reference Architecture 13
2. 3 VWS L 15
2.3.2 CoNtrollers .. 16
2.3.3 MOAEIS .. 17
2.3.4 Viewsand Controllers 18
2.3.5 Modelsand Controllers 24

2.4 Kony Reference Architecture Features 24
2.4.1 Models, Views, and Controllersin Action ... 25
2.4.2 Components and Kony Reference Architecture 26
2.4.3 FormNavigation 26
2.4.4 Dynamic Module Loading 30
2.4.5 Define NamespaceS iN APPS 31
2.4.6 Access Kony Fabric Services through Kony Reference Architecture ._.._............_. 32
2.4.7 Use Kony Reference Architecture for Kony Wearables Apps 33

2.5 Create an App with Kony Reference Architecture 33
2.5.1 Build Your Front-End Client AP ... oo L 34
2.5.2 Build Your App's Data Modelo 36
2.5.3 Import Kony Quantum Visualizer Apps into Kony Visualizer Enterprise _............... 40

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 4 of 92

Kony Reference Architecture Programmer's Guide

2.5.4 ASample FormController 41
3. References 43
3.1 FormController ObJecCt .. . 44
3.1.1 FormController Events .. . 45
3.1.2 FormController Methods 50
3.1.3 FormController Properti€sl 54
3.2 kony.model NamespacCe il 55
3.2.1 kony.model Constantsl 56
3.2.2 kony.model ObjeCts 57
3.3 kony.mve Namespace 66
3.3.1 kony.mVC FUNCHIONSo e 66
3.4 kony.mvce.registry NamesSpacCe 67
3.4.1 kony.mvc.registry Functions ... 67
3.5 Navigation Object 71
3.5.1 Navigation Methodsl 71
3.6 TemplateController Object 73
3.6.1 TemplateController Events 74
3.6.2 TemplateController Methods 77
3.6.3 TemplateController Propertieso oo 78
3.7 DepreCated .. 79
3.7.1 kony.sdk.mvvm Namespace 79

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 5 of 92

Kony Reference Architecture Programmer's Guide

1. Kony Reference Architecture APl Programmers' Guide

Kony Reference Architecture is an integrated set of development tools that enables you
to build modularized apps and increase your code reuse. This architectural pattern lets
designers, front-end app developers, and back-end service developers to work in

parallel on the same app.

Kony Reference Architecture also enables you to create apps that you can deploy
across many hardware platforms more rapidly than by using traditional JavaScript
application-development techniques. Kony Reference Architecture provides a set of
components and tools produced by Kony, Inc. that enables you to build apps in a highly

modular fashion.

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 6 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

2. Overviews

Earlier, Kony apps were developed only with the Freeform JavaScript technique. JavaScriptis a

powerful language that provides developers with a lot of flexibility. It is an extremely accessible
language that allows developers to start a project easily. However, all of these JavaScript features can
create problems as a project grows in size and complexity. From Kony Visualizer 7.3 onwards, an

MV C-based Reference Architecture has been integrated directly in to Kony Visualizer, which helps to
improve the organization and consistency of the application code.

While developing applications by using the traditional Freeform JavaScript approach, developers had
to heavily customize applications. This customization helped to overcome issues such as the usage of
a large number of forms in the application code, the presence of global functions, and a lack of
separation between the business logic and Ul components. The Kony Reference Architecture
mechanism takes these customized approaches to the next level by providing a standard in-built
architecture to create apps.

Kony Reference Architecture allows you to create a separate Presentation layer. This Presentation
layer enables a clear distinction between back-end objects, which model the perception of the real
world, and presentation objects, which are the Ul elements that appear on the screen. Furthermore,
this separation helps you to avoid muddled dependencies and to keep a clear separation among app

components.

User

Controller

Update

© 2019 by Kony, Inc. All rights reserved 7 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateNewProject.htm

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

While you develop apps by using Kony Visualizer and Kony Fabric, it is not mandatory to use Kony
Reference Architecture. You can create apps by using Freeform JavaScript. You can, however, also

use Kony Reference Architecture to develop apps, thereby leveraging the numerous advantages that

this framework provides.

The following topics explain the overviews of Kony Reference Architecture:

« Kony Reference Architecture: Decoded

» Advantages of Using Kony Reference Architecture

« A Deeper Look at Kony Reference Architecture

« Create an App with Kony Reference Architecture

2.1 Kony Reference Architecture: Decoded

Kony Reference Architecture allows you to develop highly modular and structured apps. Traditional

JavaScript development results in the creation of muddled and unstructured apps, which introduce
challenges as the apps grow in size and complexity. In a traditional JavaScript app, every element is
global and can be accessed from anywhere in the program. Apps developed with Kony Reference
Architecture, on the other hand, are highly structured even though they are still written in JavaScript.
As a result, you can write highly reusable code modules that you can incorporate into many apps.

The following diagrams illustrate the differences between traditional Free Form JS app development
and app development by using Kony Reference Architecture.

© 2019 by Kony, Inc. All rights reserved 80f92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateNewProject.htm
https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateKRAProject.htm

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide
Version 1.4

TRADITIONAL - Free Form JavaScript

JS Module 1
l ~1 N\

Form 2 \' JS Moduiz 2 Kony

- Fabric
JS Module 3 SDK

Forl;/

Form 4 JS Module 4

© 2019 by Kony, Inc. All rights reserved 9 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Kony Fabric Objects
Kony Reference ﬂ Uv it J
ArCh itectu re Object Service Kony Fabric
Controllers/ 1 SDK
Models
MODEL —.
N
A
v
I
i G
A
T
MODEL /
UPDATE U1 | CONTEXT UPDATE Ul
<f3: e z
VIEW CONTROLLER i —— seracrio VIEW
USER 1o CONTERT e ,:
=

0§ YU

GLOBAL MODEL]

H4r»Q

The diagrams show that because virtually everything is global in the traditional JavaScript model, any
form could invoke any JavaScript module or any SDK function at any time. The result is that apps are
nearly impossible to develop in a modular style. Code reuse is low and each new app often has to be
rewritten from scratch, even if a previous app contained similar functionalities.

However, under Kony's implementation of the MVC architecture, Kony Reference Architecture
structures app elements into three distinct components: Model, View, and Controller. This leads to

benefits such as a structured separation of the code, parallel development of each app component,
reduced complexity, and easier testing mechanism. For detailed information on the several
advantages of using Kony Reference Architecture, click here.

The functionality of a motorbike is a real-world example for which the MV C architecture components
can be explained. Every bike consists of the following three major units:

© 2019 by Kony, Inc. All rights reserved 10 0f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

« View = User Interface (gears, suspension, seat, brake, clutch, exhaust nozzle)
« Model = Storage (fuel tank)

« Controller = Mechanism (engine)

2.2 Advantages of Using Kony Reference Architecture

« Ease of use: App developers have a shorter learning curve while using Kony Reference
Architecture. This is because each developer needs to understand only the corresponding MVC
component that he/she is developing. So, Ul designers need to learn about only the View, the
back-end developers have to know only about the Model, and the developers who create the
app's business logic need to understand the Controller.

« Get started easily: Kony Reference Architecture provides code generation tools that help you
to quickly get started with your app-development process. These tools automatically create
Kony Reference Architecture classes that your app needs to access its services. You do not
have to create these classes, so you can proceed directly to writing the business logic of your

app.

« Automatic generation of app components: Kony Visualizer automatically generates most of
the components of an app that is created under Kony Reference Architecture. The auto-
generated objects provide straightforward and easily understandable interfaces. This results in
the abstraction of most of the complexity of the app from both developers and customers.

« Seamless integration with Kony Fabric: If your app requires the use of back-end data
services, Kony Reference Architecture provides a hassle-free integration with Kony Fabric.
Your Kony Reference Architecture app can connect to the back-end data services available in
Kony Fabric, with very little effort on your part.

« Parallel app development: As Kony Reference Architecture segregates all the elements of an
app into three major units, it enables the development of both the front end and back end of the
app in parallel. For instance, front-end developers do not have to wait until the back-end
services of the app are implemented before they can develop the app. They can use mock
objects services that simulate the app's back-end functionality while they develop the front end

© 2019 by Kony, Inc. All rights reserved 11 0f92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

of the app. Likewise, back-end developers can start development without needing any type of
integration efforts with the app, until both the Ul elements and the back-end services areina
stable state of development.

« Faster app development: The parallel app development feature of Kony Reference
Architecture logically leads to the reduction in the time and effort required to develop an app. In
addition, the use of Kony Reference Architecture speeds up your app development by avoiding
to perform repetitive tasks such as writing code to fetch data or to set the value of widget
properties. Instead, you can use declarative JSON data bindings to connect the fields in widgets
to fields in data sources, even if those data sources are on remote servers. You do not have to
write the code to update widget fields; it is generated automatically.

« Code Separation and Reuse: Kony Reference Architecture enables better code separation
and reuse. Other development methods do not help you to encapsulate the JavaScript business
logic of your apps. In other models, business logic, presentation logic, and navigation logic are
often intermixed. This makes it difficult to reuse apps, in whole or in part, in other contexts.

For example, suppose you develop banking services apps for banks. Using other architectures,
the code for the business logic typically resides in the same code modules as the code for the
navigation logic, presentation logic, or both. As a result, you will not be able to reuse the code
from previous apps. Instead, you will probably need to start the app-development process from
scratch.

With Kony Reference Architecture, however, you can completely change the user interface and
navigation logic when you write a new banking app, without having much impact on the
business logic at all. Kony Reference Architecture separates all three types of program logic into
different modules, which each have definite interfaces to encapsulate their internal functionality.
This feature makes it easy to perform major changes to one part of the app, without breaking the
rest of it. Presentation objects are completely separate from domain objects and business logic
objects; so your app could potentially even support multiple presentations, possibly even

simultaneously.

» Designers, developers, and testers can work simultaneously: Kony Reference Architecture

lets designers and developers to easily work on their specific app components, without

© 2019 by Kony, Inc. All rights reserved 12 0f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

interfering with each other's work. Designers can create the user interface, iteratively improve
the design, and perform all the testing they need to without impacting code developers on the
project. Likewise, developers can write, revise, and test the app's business logic without having
to worry about the presentation of the user interface. Furthermore, testers can test separate
pieces of the app without waiting for the whole app to be complete. For instance, they can test
the business logic even if the user interface has not been built. Or, they can test the user
interface and navigation logic, regardless of whether or not the app's core business logic has
been implemented.

« ORM capabilities: As many real-world apps generally use many remote data sources and
services, object relational mapping (ORM) plays a critical role in app design and development.
Object relational mapping (ORM) is a mechanism that makes it possible to address, access, and
manipulate objects without having to consider how those objects relate to their data sources.
Kony Reference Architecture simplifies ORM tasks by providing methods to discover ORM
metadata. Your app can also use Kony Reference Architecture methods to auto-generate ORM

queries.

2.3 A Deeper Look at Kony Reference Architecture

This section provides a more detailed examination of how Kony Reference Architecture works.

The following diagram shows a detailed presentation of the MVC architecture used by Kony
Reference Architecture.

© 2019 by Kony, Inc. All rights reserved 130f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide
Version 1.4

View

i Template _

Controller

/ Form \/ Template \/ Controller
Controllers Controllers Extensions
Model

< : “ ()(Data Model)
Object Models Data Models Extensions

In Kony Reference Architecture , the actual implementation of the MV C architecture generally uses

forms, with their widgets, as the View. The Controller and the Model are JavaScript code modules that

implement their respective functionality.

Both the Controller and the Model are JavaScript modules. Kony Visualizer has a default naming
scheme for your app's objects and files. So if you create a form in Kony Visualizer and set its name to

frmLogin, thenthe Controller for thatformis called formLoginController anditwillbe
stored in afile called frmLoginController. js. Likewise, the file for the Model is named

frmLoginModel. js. You can change these names in Kony Visualizer if you want to.

The default naming scheme is important to keep in mind when you're using the References section of
this SDK's documentation. For instance, the References section contains documentation for the

following objects.
o FormControllerObject

« TemplateController Object

© 2019 by Kony, Inc. All rights reserved 14 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

You will not actually find objects with these names in your code. Instead, under the default naming
scheme, you will find names such as those used above. That is, if you name your form frmLogin,

then the FormController object for that formis called frmLoginController. Andif you have a

form called £ rmMa in, then that form will have a FormController object called
frmMainController that'sstoredinafilecalled frmMainController. js.Allof your

other FormController objects and TemplateController objects will be similarly named.

Note that there are some objects whose name is exactly what you see in the References section.
These are as follows:

» kony.Model.Exception Object
« kony.Model.KonyApplicationContext Object
« Navigation Object

Your code accesses these objects by using appropriate names.

2.3.1 Views

Views in an app can be forms, templates, or masters. Apps under Kony Reference Architecture must
have at least one form that functions as a View. More typically, apps have several forms, each one
containing a variety of widgets for displaying information and for enabling user interaction. You create
your app's forms in Kony Visualizer and add widgets as needed.

Templates enable you to provide your app with a uniform user interface. For instance, you can create
a template for all of the buttons your app displays to make them all have the same colors, fonts, and
shapes. If you make changes to the template, the changes propagate to all of the buttons that you
have applied the template to.

Masters are a type of master form. In some ways they are similar to templates in that they provide a
rapid way to add a standard user interface element to your app. However, masters are a forms.
Therefore, you can encapsulate more into a master than you can encapsulate into a template. When
building masters, you can add in forms, widgets, templates, code, and even other masters. This
enables you to build highly complex standard components that you can just drop into as many projects
as you want.

© 2019 by Kony, Inc. All rights reserved 150f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

For example, you could create a master that provides all of the user interface elements and code
needed to log into backend services that your company offers. Once this master is built and tested, you
can easily add it to any app that you create, thus saving yourself large amounts of time.

Views are never global under Kony Reference Architecture . They can only be accessed by their
Controllers. In fact, each View is stored in a member variable in the class of its Controller.

Kony Visualizer stores the forms for your Views in the Forms folder under the respective channels that
you're developing your app for. So, for instance, forms for mobile devices are stored in a Forms folder
under the Mobile channel.

2.3.2 Controllers

Every View requires an associated Controller. Therefore, your app's code can have form Controllers,
master Controllers, and template Controllers init. They are all implemented as JavaScript modules.
Controllers contain the business logic of an app. They communicate with the data Model objects to
retrieve, update, and process the app's data. Controller can communicate with as many Models as
needed.

When Controllers operate on an app's data, they also send the data to the View to be displayed in the
corresponding form, template, or master. In this way, it updates the user interface whenever there is a
change in the displayed data from the Model.

In addition to form Controllers and template Controllers, Kony Reference Architecture also provides
Controller extensions. You can write Controller extensions in JavaScript modules to provide
specialized or enhanced functionality for components. For example, suppose that you create a master
that encapsulates all of the functionality for logging onto your backend database. Imagine that you are
creating a new app and you drop the login master into your new app. Now you want to add the ability
to log in using Facebook. With a Controller extension, you can add the Facebook login functionality to
your login master without changing the base login master itself. You just add in some new Ul elements
and add the new functionality for logging in with Facebook to a Controller extension that you write.
That way, none of your new code impacts the standard login master that you've created and that you
use in all of your apps. Each individual app can enhance the standard login master in any way you
need without you having to modify the standard login master itself.

Controllers for Views are typically stored together with their forms, as the following figure shows.

© 2019 by Kony, Inc. All rights reserved 16 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

However, shared Controllers are stored in the Sha red folder, which appears after you create a

shared Controller. When it is empty, the Sha red folder is not shown.

2.3.3 Models

It's often the case that apps communicate with, retrieve data from, and update multiple data sources.
Each data source is represented to the app as a Model. Models encapsulate data sources and make it
possible for your app to access them in a standardized way. The data sources that Models
encapsulate can be on the user's device or remotely accessible across the Internet.

Models are optional in your apps. Simple apps might not use them. For example, a calculator app
would not need Models because the data it operates on is probably nothing more than a few variables

containing some numbers.

Most enterprise-level apps use Models to interface to backend data sources. Typically, developers
who create their apps with Kony Visualizer will also use Kony Fabric to create their server-side apps

that provide access to their backend data sources. This is not required, it's just the easiest way to build
your app. If you decide to use Kony Fabric for your backend app, you can get it to generate your
Models for you. More specifically, you create your backend app by building object services with Kony
Fabric . Utilizing the Kony Fabric console, you can then generate Models, called object Models, that
provide your front-end Kony Visualizer app with access to your backend app's object services. After
you generate your object Models for all of your backend data sources, Kony Visualizer downloads
them into your front-end Kony Reference Architecture project that you are building in Kony Visualizer
on your local development PC . The object Models provide your front-end app with code that enables
the app to retrieve data from the backend object services, update, create, or delete the data, and save
the changes to the backend object services.

One of the many advantages of using Models to represent your data sources is that designers and
developers working on the front-end app don't have to wait until the backend Kony Fabric app is
complete before they start their work. Developers on the front-end app can build objects that provide
mock servicesto the app. That is, developers can create Models to use in the front-end app that
simulate the interaction that the front-end Kony Reference Architecture app will have with the backend
Kony Fabric app when the backend app is complete. Using these mock services, both the front-end
app and the backend app can be under development at the same time.

© 2019 by Kony, Inc. All rights reserved 17 of 92

http://community.kony.com/documentation/integrate-data

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Kony Reference Architecture also provides you with object Model extensions that you can put custom
code into to enable your app to do data validation or process the data before it is displayed or saved.
Kony Visualizer generates the object Model extension for you and includes them in your Kony
Visualizer project.

Models are stored as a shared resource in your Kony Visualizer project.

2.3.4 Views and Controllers

Forms under Kony Reference Architecture work very similarly to the way they work in a free form
JavaScript app built with Kony Visualizer. For example, whether you're building a Kony Reference

Architecture app or a free form JavaScript app, you can drag and drop forms, widgets, and so forth
onto any form using the WYSIWY G editor in Kony Visualizer. You can use forms across multiple
channels. That s, you can use the same form for Android phones, iOS phones, and so on, Or, if you
prefer, you can use specific forms for specific channels.

The main difference between forms in Kony Reference Architecture and forms in a free form
JavaScript application is that forms in Kony Reference Architecture have Controllers associated with
them. Kony Visualizer automatically generates form Controllers for each form you add to your Ul.
When you add actions to forms in Kony Reference Architecture , Kony Visualizer automatically
generates action Controllers for them.

Views are only available from within the form's Controller. So only the form's Controller can update the
form's data. Your app uses the kony.mvc.Navigation function to create a Navigation object. It can then

callthe Navigation object's navigate function to move from form to form. Because access to a

form only happens through the form's Controller, your app cannot call a form's show or destroy

methods. Only a form's Controller can display the form on the screen. And if your app needs to destroy
aform it calls kony.application.destroyForm, which destroys the form, its Controller, all widgets it

contains, and its children.

© 2019 by Kony, Inc. All rights reserved 18 of 92

http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#working_with_Action_Editor.htm?TocPath=Designing%2520an%2520Application|Add%2520Actions|_____0
http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm#FlexForm_Methods.htm%23show?TocPath=Reference|FlexForm%2520Widget|Methods|_____27
http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm#FlexForm_Methods.htm%23destroy?TocPath=Reference|FlexForm%2520Widget|Methods|_____5
http://docs.kony.com/konylibrary/visualizer/viz_api_dev_guide/Default.htm#kony.application_functions.htm?TocPath=References|kony.application%2520Namespace|Functions|_____0

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Add Actions

Kony Visualizer enables you to add actions to your app's widgets. In fact, this is the way to add actions
to your app's form Controllers. When you add actions to a widget, the thi s keyword inside the
widget's callbacks refers to the form Controller. To add a function in a Controller as the event callback
handler for a widget's event, your app uses code similar to the following.

btntest.onClick = Controller.AS Button OnClickEvent;

In the code snippet shown here, bt ntest isthe name of a But t on widget. This snippet sets the
Button widget.'sonClick event. The event callback handleristhe AS Button
OnClickEvent function, whichisa member ofthe Controller object. The Controller
object is an object that Kony Visualizer generates for your form. The AS Button

OnClickEvent function is written by you.

The following code sample demonstrates how an application might add an event callback handler to a
button.

define ('frmLogin', function ()
{
return function (Controller)
{
function addWidgetsfrmLogin ()
{
this.setDefaultUnit (kony.flex.DP);
var btnSetIPAddress = new kony.ui.Button (
{
"height": "55dp",
"id": "btnSetIPAddress",
"onClick": Controller.AS Button
6c7c9d022bccdacla603aal3c89110efe,
"skin": "buttonOnfrmLoginSkin",

"text": "Set IPAddress",

© 2019 by Kony, Inc. All rights reserved 19 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

"width": "25%",

"zIndex": 1

"contentAlignment": constants.CONTENT ALIGN CENTER,
"displayText": true,
"padding": [0, O, 0, O],
"paddingInPixel": false
by
{}):
this.add (btnSetIPAddress) ;
i
return [
{"addWidgets": addWidgetsfrmlLogin, "id": "frmLogin",
"layoutType": kony.flex.FLOW VERTICAL},
{"displayOrientation": constants.FORM DISPLAY
ORIENTATION PORTRAIT, },
{"retainScrollPosition": false, "titleBar": false}]
i
})

The example above adds a But t on widgetcalled bt nSet IPAddress to a form called
frmLogin, whichis a form that is used to display a login screen. For the onClick event, the example
setsafunctioncalled AS Button 6c7c9d022bccd4a6latc03aa3c89110efe astheevent

callback handler.

Share Controllers Between Forms
Typically, each form has its own Form Controller. However, you can assign a Controller to multiple
forms if you choose to do so. If the forms that share the Controller are specific to a particular channel,

such as iOS, Kony Visualizer automatically stores the shared Form Controller in a folder under that

specific channel.

© 2019 by Kony, Inc. All rights reserved 20 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

It is also possible for forms that are used across channels to share a single Form Controller. Let us
suppose that your app has a set of three forms that are used on both the iPhone and Android phones.
Furthermore, consider that all three of those forms share the same Controller. In such a scenario, the
shared Form Controller can be found in a folder outside of the iOS and Android channels that is

specifically for shared Controllers.

Note: ltis not possible to share the ControllerActions JavaScript file between multiple forms.

While developing your app, you can specialize existing forms for particular channels. This process is
called forking the form because Kony Visualizer actually creates a new version of the form for the
specific channel. If you fork the form, it automatically forks its Controller. Forked forms cannot be

shared.
To share a Controller between forms, follow these steps:

1. Inyour Kony Reference Architecture project, click the form with which you want to share a

Controller. Here, frmIncidentDetails is the selected form in the Responsive Web channel.

Project

frmincidentDetails

frmIncidentList

Controllers

2. Gotothe Properties panel > Look tab.

© 2019 by Kony, Inc. All rights reserved 21 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateKRAProject.htm

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

3. Forthe Controller field and beside the Form Controller name, click the Ellipsis Menu icon .

Here, frmIncidentDetailsController is the Form Controller of the frmIncidentDetails form. The
Switch Controller window appears, with the list of available Controllers in different channels
and frmIncidentDetailsController in the Desktop (Responsive Web) channel selected by
default.

PROPERTIES
Look

v General

ID frmincidentDetails

Render Edit

Friendly Name

Controller

4. Click the Controller that you want to share with the form. Here, we have selected
frmIncidentDetailsController of the frmIncidentDetails Mobile form.

© 2019 by Kony, Inc. All rights reserved 22 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Switch Controller X

Search mabile/frmincidentDetailsController

~ [Mobile
frmincidentListController
~ [Tablet
BH frmincidentDetailsController
PE frmincidentListController
~ [] Desktop
5 frmincidentDetailsController

BE frmincidentListController

Cancel Apply

5. Click Apply. The frmincidentDetailsController of the frmIncidentDetails Mobile form is shared
with the frmIncidentDetails Responsive Web form. A new folder called Shared Controllers is
also created in the Project Explorer, with frmIncidentDetailsController placed under it. When
you write any code in the frmincidentDetailsController JavaScript file, the code is shared with

all the forms that this Controller is shared with.

Project

© 2019 by Kony, Inc. All rights reserved 23 0f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

2.3.5 Models and Controllers

Models encapsulate data storage locations and provide a standardized interface for creating data on
those data storage locations, reading it into the app, updating it, and deleting it. The data storage
locations can be on the user's device or remotely connected across a local network or the Internet.

Wherever the data resides, the app uses Models as a standard way of accessing it.

In Kony Reference Architecture , Controllers contain the app's business logic. Therefore, an app's
Controllers use Models to perform operations on data storage locations, which are often referred to as
data sources.

2.4 Kony Reference Architecture Features

Kony Reference Architecture supports the use of Kony forms and widgets. You can use these
elements to build your app's user interface just as you normally do when developing apps with Kony
Visualizer. Under Kony Reference Architecture, you cannot use deprecated box-style widgets such as
popups, VerticalBox forms, HorizontalBox forms, and box-based templates. Y ou must build your app
with FlexForm-based widgets.

To enable the modularization of your app's JavaScript source code, Kony Reference Architecture
mandates the use of RequiredS and the Asynchronous Module Definition (AMD) API for loading
JavaScript files and modules. Therefore, any code modules you add to your app must follow the
RequireJS and AMD conventions.

This section contains the following topics:

« Models, Views, and Controllers in Action

« Components and Kony Reference Architecture

« Form Navigation

» Dynamic Module Loading

« Define Namespaces in Apps

© 2019 by Kony, Inc. All rights reserved 24 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

« Access Kony Fabric Services through Kony Reference Architecture

« Use Kony Reference Architecture for Kony Wearables App

2.4.1 Models, Views, and Controllers in Action

Models, Views, and Controllers work together to provide an app's functionality. The following diagram
illustrates how Controllers interact with Views and Models.

User

ahon

Update

Controller

Update

The Controller responds to user actions that it receives from its associated View. As stated previously,
each Controller is associated with exactly one View. However, Controllers may communicate with any

number of Models.

All Controllers have a member variable named V i ew that contains the View for that specific

Controller. Views are only accessible from within their corresponding Controllers by using the
statementthis.View.

Each form, template, or master in an app has an associated Controller and only the individual
Controllers can directly access their own Views. However, when needed, Controllers can invoke their
parent Controller's methods by calling the executeOnParent function. This provides both a clean
separation of the layers in the hierarchy of Views and a solid encapsulation of each View's
functionality.

© 2019 by Kony, Inc. All rights reserved 250f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Important: 1tis possible to define a master without a contract. The complete View hierarchy
of a master without a Controller is accessible from both its own Controller and that of its
parents. For more information, see Masters.

Controllers can also retrieve information from Models, display it in Views, and enable the user interact
with it. Based on the user's input, the Controller can send notifications to the Model, which saves the

changes onto the data source.

2.4.2 Components and Kony Reference Architecture

When you create a component in either a Free Form Java Script or in a Kony Reference Architecture
project, Kony Visualizer automatically creates one Controller.js and one ControllerActions.js file.
Consequently, any component that is created contains Kony Reference Architecture modules by
default.

For more information about components, refer the Creating Applications With Components section in

the Kony Visualizer User Guide.

2.4.3 Form Navigation

Kony Reference Architecture dynamically loads forms at runtime. When a Kony Reference
Architecture app creates a form, it also assigns the form a "friendly" name that is more readable to
humans than the form's ID. A form's friendly name must be unique and it should make sense to the
programer or programmers maintaining the app's source code.

Note: Your app can also assign friendly names to templates. But templates are not involved in
navigation.

Kony Reference Architecture maps the friendly names to the forms in your app. To navigate between
forms, an app must create a Navigation object by calling the kony.mvc.Navigation function. When

invoking the kony .mvc.Navigation function, your app passes it the friendly name of the target

form. Once the Navigat ion objectis created, the Controller for the currently-displayed form can

© 2019 by Kony, Inc. All rights reserved 26 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#C_DesigningWorkingWithComponents.htm
https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

switch to the target form by calling the Navigat i on object's navigate method . This activates the

Controller for the destination form. When the Controller for the destination form is active, it can then
display its View, get data from one or more Models, and so forth. The following code sample illustrates
how this is done.

var params = {“title” : “My Title”, “description” : “My
description”};
var x = new kony.mvc.Navigation (“FormFriendlyName”) ;

xX.navigate (params) ;

The example code here navigates to a new form whose friendly name is FormFriendlyName. In
the calltothe Navigation object's navigate method, it passes parameters from the current
form Controller to the destination form Controller through the params argument. The params

argument is a JavaScript object that is passed to the Controller of the target form. It can contain a small
amount of context information for the target form's Controller.

Callingthe Navigation object's navigate method creates the target form and its Controller,
and then activates the target form's Controller. Your app does not need to call the form's destroy
method on the form being navigated away from. In fact, under Kony Reference Architecture , it can't
invoke the de s t roy method for any form. Instead, your app calls the kony.application.destroyForm

method to dispose of forms, their Controllers, and all of their child widgets.

Your app also cannot call the show method on any form and does not need to. Under Kony

Reference Architecture , the form is the implementation of the View. It can only be directly accessed by
the form's Controller through the Controller's Vi ew property. Therefore, the Controller can get

access to its View withthe this . View statement.

Customize Form Navigation

Your app can customize the navigation process by implementing callback handler functions for the

target form's Controller events. These events are triggered during navigation and before the target
form is visible. Providing callback handler functions for them enables you to customize what happens
when a form is navigated to.

© 2019 by Kony, Inc. All rights reserved 27 of 92

http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm#FlexForm_Methods.htm%23destroy?TocPath=Reference|FlexForm%2520Widget|Methods|_____5
http://docs.kony.com/konylibrary/visualizer/viz_api_dev_guide/Default.htm#kony.application_functions.htm%23destroyForm?TocPath=References|kony.application%2520Namespace|Functions|_____7

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

For example, if you want to customize the context information the target form receives, you can

provide a callback handler function for the onNavigate Event. This is shown in the sample below,

onNavigate : function (context, isBackNavigation)

{

this.context = context;

Note: The object that is sent as part of the onNavigate Event is accessible for all form lifecycle
events.

The context that is passed with the onNavigate Event of the kony.mvc.Navigation Object is available in
the navigationContext key of FormController instance.

The following code shippets demonstrate how to access the context from the lifecycle events of forms:

1. Navigate from source form to destination form.

var nav = new kony.mvc.Navigation ("DestinationForm") ;

nav.navigate ({"keyl":"valuel"});

2. Link preShow, postShow, and onMapping Events of the destination form with the appropriate
events function defined here.

function preShow ()

{

kony.print (this.navigationContext) ;

}

function onMapping ()

{

kony.print (this.navigationContext) ;

}

function postShow ()

{

kony.print (this.navigationContext) ;

© 2019 by Kony, Inc. All rights reserved 28 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

}

//Here, this.navigationContext contains the context that was passed
in navigate Method during the navigation from the source form to

the destination form.

3. Inthe onNavigate method, your app may need to pause the navigation so that it can load

data, or do whatever else it needs to do, by invoking the pauseNavigation and

resumeNavigation methods.

4. You may also want to specify a custom Model for the target form. To do so, provide callback
handler functions for the getModel and setModel functions, as illustrated in the following sample

code.

getModel : function ()
{

this.Model = new CustomFormModel () ;

return this.Model;

setModel : function (newModel)

{
this.Model = newModel;

Control Flow of navigate Function

The exact control flow for the navigate function is as follows:

1. Getthe Controller if it exists already. If not, create it.

2. Update the Model with the Navigation object's Model.
3. Ifitis defined, invoke the target Controller's onNav i gate callback handler function.

4. The target Controller shows the form.

© 2019 by Kony, Inc. All rights reserved 29 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

2.4.4 Dynamic Module Loading

Kony Reference Architecture apps can define distinct modules that contain discreet functionality and
load them dynamically on demand. In fact, Kony Reference Architecture does this with its own code
modules. For instance, under older programming Models, apps loaded all of their JavaScript modules
at startup. However, Kony Reference Architecture loads them on demand. This both saves memory
and decreases startup time.

Using Kony Visualizer, you can create your JavaScript modules consisting of a form and a form
Controller The file containing the form has the name:

<formID>.7Js

where <formID> is the unique ID of the form your app is loading. Similarly, the form Controller is

contained in a file called:

<formID>Controller.js
where <formID> is the unique ID of the form your app is loading.

These two files follow the format defined by the RequireJS standard. In addition, Kony Reference

Architecture adds a method called addwidget s to the form. This method has the following

signature.
addWidgets (formref) ;

where formre f is a reference to the widget to add.

Kony Reference Architecture uses an AMD stack for loading JavaScript modules, so the functionality
in your modules must use the AMD conventions.

When loading a module, your app must follow the standard RequireJS notation. So when your app
specifies the file name it must not include an extension suffix. This is illustrated in the following sample
code.

ControllerConfig = require (“YaccountModule”) ;

© 2019 by Kony, Inc. All rights reserved 30 0f 92

http://requirejs.org/

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

As the example shows, an app can load afile called accountModule. js by invoking the
require function and passing it the name of the file without the . j s extension. The file name must
match the name given in de £ i ne notation in your app. All of the define notation uses that are

mentioned in the RequireJS documentation are supported in Kony Reference Architecture except for

require.config.Paths are always relative to the root JavaScript folder.

Kony Reference Architecture also supports module dependencies. So if your app loads a module that
is dependent on another module, it is loaded as well.

2.4.5 Define Namespaces in Apps

In addition, Kony Reference Architecture lets you define namspaces in your apps for the masters that
you create. Each fragment inside the namspace's name is a folder name. For example, suppose you
create the namespace mycompany.ui in your app. Further imagine that the mycompany.ui namespace
contains afile called ChartControll. js. The path to the file would then be
mycompany\ui\ChartControl. js. The name for this file in RequireJS notation would be
"mycompany/ui/chartcontrol". Toload this file, your app would need code similar to the

following example.

require (
[“mycompany/ui/chartcontrol”],
function (retValue)
{
//use retValue

})

Important: You can only define namespaces for your masters, not for forms.

If your app needs to load a module in the context of a worker thread, it can do so by adding the worker
thread before the file name, as shown in the following code.

ControllerConfig = require (“workerthread\accountModule2”) ;

© 2019 by Kony, Inc. All rights reserved 31 0f92

http://requirejs.org/docs/api.html#define

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide
Version 1.4

2.4.6 Access Kony Fabric Services through Kony Reference Architecture

In addition to modularizing and encapsulating an app's internal components for increased re-use, the
Kony Reference Architecture SDK also modularizes and encapsulates the app's access to backend
services. In particular, the Kony Reference Architecture SDK interfaces directly to Kony Fabric

services to a seamless, end-to-end development environment for your apps.

The easiest way access backend data sources is to interface your front-end client app with a backend
Kony Fabric app. In this way, you can easily access a wide range of backend data source through the
uniform and standardized interface that Kony Fabric provides. Backend data sources are accessed
through object services. Object services, in turn, are represented in your app by object Models, which
are often just called Models. So the Kony Reference Architecture SDK uses object Models to provide
front-end client apps with a uniform way to exchange data with backend data sources. In fact, the
Kony Reference Architecture SDK generates object Models for you that provide you with code to
create, read, update, and delete records in backend data sources.

Using Kony Kony Fabric, your Kony Reference Architecture SDK app can quickly send multiple
requests to backend services that can then be executed concurrently. For example, if you were writing
a banking app, your app can use the Kony Reference Architecture SDK and Kony Fabric to rapidly
send requests for account information and customer personal information and also request map
information from a commercial map server, such as Mapquest. All of these requests are executed on
their respective concurrently because the successive requests are sent out before any of them return
information. When they do respond, the information appears to come back to your app "automatically"
because the Kony Reference Architecture SDK and Kony Fabric handle most of the work.

Of course, you can add custom logic to your app to do whatever data processing is necessary. For
instance, in the preceding banking app, your app can request a map of the area in which the user is
standing. It can also send out a request to the bank's corporate servers asking where the branch
offices are in that locality. When the two pieces of information come back to the user's device, the app
can use custom logic that you write to combine the branch office locations with the map so that the

user can see where the nearest branches are.

© 2019 by Kony, Inc. All rights reserved 32 0f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

When you develop an app, you build your object services in Kony Fabric to provide your front-end
client app with access to backend data sources. You then use Kony Visualizer to create your front-end
client app. With the Kony Reference Architecture SDK and Kony Fabric, you can provide end-to-end
solutions for your customers and at the same time focus on the specific logic for the task at hand rather
than user interface tasks, backend connection tasks, and so forth. The Kony Reference Architecture
SDK and Kony Fabric provide you with a powerful toolset that enables you to automate most of the job
of app production.

The Kony Microservices Framework Server Tools provide server-side objects that connect with one or
more Kony Fabric services. These services can range from Identity services to Messaging and Sync
services. You can also interface your app with SAP, SOAP, REST, and RDBMS services through
Kony Fabric. With this development Model. you have full access to the Kony backend services that any
other app built on Kony technologies would have. And most of the objects, for both the client and the
server sides of the app, can be generated automatically so you don't have to code them yourself.

2.4.7 Use Kony Reference Architecture for Kony Wearables Apps

Itis important to note that you can create a Kony Wearables app under Kony Reference Architecture .

For example, Kony Wearables enables you to develop apps for the Apple Watch. When you create an
Apple Watch app, you can use Kony Visualizer to create the app's forms. However, Kony Visualizer
does not create Controllers for the forms in an Apple Watch app because the Apple Watch app has its
own specific architecture.

In addition, you can add Apple App Extensions to your Kony Reference Architecture project so that it
can use Apple App Extensions on iOS and OS X. Kony Visualizer does not generate any Kony
Reference Architecture for Apple App Extensions. So adding App Extensions does not result, for
example, in additional Controllers in your project.

2.5 Create an App with Kony Reference Architecture

When you create an app with Kony Reference Architecture, you can start by building the app's data
model in Kony Fabric Console. You can add various back-end services and operations that your front-
end client app requires. You can then build your front-end client app with Kony Visualizer. Kony
Visualizer provides you with a way to interface your front-end client app with your back-end Kony
Fabric app, as described on Kony Visualizer User Guide and in Kony Fabric User Guide.

© 2019 by Kony, Inc. All rights reserved 33092

http://docs.kony.com/konylibrary/visualizer/viz_wearables_dev_guide/Default.htm
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm
http://docs.kony.com/konylibrary/konyfabric/kony_mobilefabric_user_guide/Default.htm

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

2.5.1 Build Your Front-End Client App

After you have created your Object services by using Kony Fabric, you can build your front-end client
app with Kony Visualizer.

Using the Kony Fabric channel in the Kony Visualizer Enterprise Edition Project pane, you can
connect your front-end client app to your back-end Kony Fabric app and the services it offers, and then
generate the object model. The Kony Fabric node is not available on Kony Visualizer Starter Edition.

You can select the channels for which you want to build your app, such as Desktop, Mobile, Android
Wear, or Tablet. The Reference Architecture Extensions feature is not available for the Apple Watch
channel. You can then design the user interface of your app by using various widgets available on
Kony Visualizer. For more information on channels, widgets, and API functions that are available on
Kony Visualizer, refer Kony Visualizer User Guide, Kony Visualizer Widget Programmer's Guide, and
Kony Visualizer API Programmer's Guide.

Create a Kony Reference Architecture Project
You must follow these steps to create a Kony Reference Architecture project on Kony Visualizer:

1. On Kony Visualizer, click File, and then click New Project. Kony Visualizer displays the New
Project dialog box with the types of apps that you can create.

2. Select the Create Custom App option, and click Choose. Kony Visualizer again displays the
New Project dialog box with the available project types

3. Selectthe Kony Reference Architecture project type.

4. Type the name of your project in the Project Name field. You must follow these guidelines while
specifying the name of your project:

« The name must always start with an alphabet.

« The name should contain only alphabets and digits.

© 2019 by Kony, Inc. All rights reserved 34 of 92

http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm
http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm
http://docs.kony.com/konylibrary/visualizer/viz_api_dev_guide/Default.htm

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

« Special characters and reserved words are not allowed.
« The name must contain more than three characters.

5. Click Create. Kony Visualizer creates the project.

Build the App's User Interface

Your client app's user interface displays one or more screens, also called views. Views can be forms,
templates, or masters. Every view must have at least one of these. More typically, a view requires
multiple forms, templates, or masters. The process of creating views is described in the Kony
Visualizer User Guide.

After creating at least one screen for your app using forms, you can add widgets to the forms. Widgets
provide your app with the user interface elements that it needs. These include buttons, menus, text
labels, calendars, and more. They also give your app access to the functionality of the user's device
through the use of a camera widget, a phone, widget, and so forth. The process of populating your
app's forms with widgets is presented in the Kony Visualizer User Guide.

Add Functionality to Your App

Each time you add forms to your app, Kony Visualizer automatically adds a controller for each form
and creates a folder in your project to put itin. You'll find the controllers for your forms in the project
tree under the channel that you're developing the app for. So if you add a form called frmMain to your
project and you're developing the app for Android and iOS, you'll find folders for the frmMainController
in the Android and iOS branches of the project tree. Whenever you change the names of your forms
and templates, Kony Visualizer automatically renames the controllers associated with them.

Likewise, when you add templates to your apps, Kony Visualizer adds the corresponding controller for
each template. Renaming your template automatically renames its controller.

To add functionality to your app, you add your custom JavaScript code to the controllers in your app.
The controller for a form or template is the only object that has access to the form or template. Only the

controller can performs actions on it.

© 2019 by Kony, Inc. All rights reserved 350192

http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#PopulatingWidgets.htm?TocPath=Designing%2520an%2520Application|Populate%2520Screens%2520with%2520Widgets|_____0

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Your app may also contain models, one for each backend data source. The data sources can be local
on the device or remote servers that are accessed across the network. If you need to, you can add
custom code to your app's models to enhance or customize the model's functionality.

In addition, you can add actions to your forms just as you would with any other Kony Visualizer app.
When you do, Kony Visualizer automatically creates an action controller for your actions. However,
this is an autogenerated file and you should not make any changes to it. If you do, they will be
overwritten the next time the file is regenerated.

2.5.2 Build Your App's Data Model

The steps required to build the data model of your app are as follows:

« Build a Kony Fabric app

« Configure ldentity Services

« Create an Object Service

« Configure the Data Model

Build a Kony Fabric App

To integrate your front-end client app with the back-end services that you want the app to access
through Kony Fabric, you must first create a Kony Fabric app by using Kony Fabric Console. For more
details on how to do so, refer Kony Fabric documentation.

In this walkthrough, we will create a simple service that integrates with SAP data in the back end.
Although your data may reside in a different backend storage system, the basic workflow for building
your app's data model will be very similar to what's shown here. In this walkthrough, we will assume
that you have already created your Kony Fabric app.

For our example, the Kony Fabric app is called Work Order. The Work Order Kony Fabric app gets its
data from SAP. In the Kony Fabric console, the results will resemble the following illustration.

© 2019 by Kony, Inc. All rights reserved 36 of 92

http://docs.kony.com/konylibrary/konyfabric/kony_mobilefabric_user_guide/Default.htm#homepage.htm?TocPath=_____1

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide
Version 1.4

3 Mobiebabric Console (G Pasian Y. KONY Webkx Enerprise = x Y[V

€ - €[10.10.24129:8080/mfconsole/#/apps/true

Applications ~ API Management Installer & SDKs

E—— =a oty Nama Modtesue

Binarysample oy
M. 08 Nov 2015 0542 UTC w

nop

OnDemandDemo ‘Work Order
Medfed: 05 Nov 2015 12:45 UTC. Modifed: 08 Nov 2015 12:14 UTC

Configure Identity Services
1. Select the app you just created. In this example, it's the Work Order app.
2. Click the Configure Services tab.
3. Choose Identity Services.
4. Click the Configure New button.
5. Settheidentity's name.
6. Selectthe Type of Identity. In this example, it will be Kony SAP Gateway.

7. Setthe address and port of the gateway server.

© 2019 by Kony, Inc. All rights reserved 37 of 92

Kony Reference Architecture SDK APl Programmer's Guide
Version 1.4

2. Overviews

8. Supply the remaining information such as the login credentials and so forth. You screen will

resemble the following.

Configure Services Manage Client App Assets Publish

i \dentity [47] Integration o} Orchestration [T Cbjects {+ Synchronization ' Messaging

Identity Services © Create New

Mame * Type of Identity

identitysap I:';Ay' Kony SAP Gateway -
Gateway address * Port*

Itipd - 10.10.20.81 15039 Test Connection

Header parameter name prafic * 7

KaonySAP
User D * Password *

demo_sam . Test Login

Detault Caller ID = Default Caller Group ;

leony kony

Create an Object Service

Next, you create an object service that will provide your front-end client app with access to the data in
the data store. In this example, the client app on the device or desktop will access the work order data
in the SAP database.

1. Inthe Configure Services tab in the Kony Fabric console, click Objects.
2. Select the Configure New button.
3. Setthe name and endpoint type. In this example, the endpoint type is SAP.

4. Select Existing Identity Provider and enter the name of the identity service you create in Step
2. This example uses the name identitysap.

© 2019 by Kony, Inc. All rights reserved 38 0f 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

5. Fillin the other information such as User ID, Password, and so forth.

Configure Services Manage Client App Assets Publish
7) Wentity (&7 Integration $ Orchestration [Objects (7 Synchronizaton § Messaging

Object Services + New Object Service

Name. Endpaint Type

workorders A .
Select authentication service (7
@ Use Bxisting Identity Provider Spacify Login Endpoint

identitysap

Gateway address & port *

httpsie 10.10.20.81:15099
UserID* Password *
demo_Fam e :'E-i'lniljn
Default Caller 1D * 7 Default Caller Group 7

kony Kony ‘

6. Clickthe Save & Configure button.

Configure the Data Model
At this point, you need to configure the data model your service will use.
1. Continuing from #6 in Step 3, click the Generate button.

2. Indialog box that appears, select the object service you want to use. The Kony Fabric console
then displays a list of objects offered by the selected object service.

© 2019 by Kony, Inc. All rights reserved 39 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

3. Choose the object or objects that you want your client app to have access to. In this example,
we will select only one object, as shown in the following figure.

Generate from SAP Objects

Login AWS WMBASS_EAM VTIINTERNAL WORKFLOW DOB ZCUSTOM_OBIECT — ZEAM
ZSKYTECHEAM ~ ZWOHDR _SKYTECH_CSA _SKYTECH_EAM _SKYTECH_IM _SKYTECH_SCM

SKYTECH_SD SKYTECH_WF

EAM_DOB_NOTIF

® EAM_DOB_NOTIF_IN

® EAM_DOB_REFERENCE_DATA
e EAM_DOB_WORK_ORDER

E w EAM_WO_HDR
® EAM_WO_ADDRESS

EAM_WO_HIERARCHY

EAM_WO_MPT
® EAM_WO_ATTACHMENT
] EAM WO ABI TET h

CANCEL ~w’:—‘ﬂ'

4. Click Next.

5. Inthe dialog box that appears, click Generate. Your data model is now generated automatically
by the system.

6. Click the Publish button to publish your Kony Fabric data service app.

2.5.3 Import Kony Quantum Visualizer Apps into Kony Visualizer Enterprise

If you create your app on Kony Visualizer Starter Edition and you decide to import it into Kony
Visualizer Enterprise Edition so that you can integrate your app with Kony Fabric backend services,
you will need to generate ObjectModel and ObjectModelExtension classes for your app. To do so, use
the following steps.

© 2019 by Kony, Inc. All rights reserved 40 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

1. From the Kony Visualizer main menu, choose File and then Import.
2. Inthe Import Kony Application dialog box, ensure that Select project root is selected.

3. Click the Browse button, navigate to your Kony Visualizer Starter Edition project, select it, and
click OK.

4. After the Kony Visualizer Starter Edition project loads, point your mouse cursor at the Kony

Fabric channel in the Kony Visualizer Enterprise Edition Project pane.
5. Click the down arrow that appears and choose Generate Object Model from the context menu.

6. If prompted to do so, specify the name of your Kony Fabric app, as well as the object services
you want to use in your front-end Kony Visualizer app.

2.5.4 A Sample FormController

The following sample code shows the partial implementation of a FormControl1ler object. Note

that the implementation is in RequireJS format, which is mandatory for Kony Reference Architecture
applications.

define (

{

onIPRecievedFromIPControl: function (masterControllerl, newtext)

{

if (null != newtext)

{

alert (newtext) ;

}y

AS Button 6c¢c7c9d022bcc4a6la603aa3c89110efe: function
(eventobject)

{

this.view.defaultAnimationEnabled = false;

© 2019 by Kony, Inc. All rights reserved 41 of 92

2. Overviews Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

this.view.masterl.onIPAddressSet =
this.onIPRecievedFromIPControl;

this.view.masterl.IPAddress = "212.212.100.110";

Note: In an MVC project, a top-level FlexContainer is added by default when you create a new
template.

© 2019 by Kony, Inc. All rights reserved 42 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

3. References

This section provides detailed documentation about the objects and other API elements that the Kony
Reference Architecture SDK provides.

Model Controller Other
kony.model Namespace FormController Object kony.mvc Namespace
TemplateController Object kony.mvc.registry Namespace
Navigation Object

Note that there are no View objects provided in the SDK because, under the Kony Reference
Architecture, forms, templates, and masters function as views. You create forms, templates, and
masters in Kony Visualizer.

When you're building your Kony Reference Architecture app in Kony Visualizer, Kony Visualizer
generates some of your app's objects for you and creates files to store them in. Kony Visualizer uses a
default naming scheme for the objects and files it generates. The default naming scheme is important
to keep in mind when you're using the References section of this SDK's documentation. For instance,
the References section contains documentation for the following objects.

o FormControllerObject
« TemplateController Object

You will not actually find objects with these names in your code. Instead, under the default naming
scheme, you will find names based on the form names you use in Kony Visualizer. That is, if you create
aformin Kony Visualizer and name it f rmLogin, then the FormController object for that form is

called frmLoginController anditisstoredinafile named frmLoginController. js.
Likewise, if you have a form called f rmMa i n, then that form will have a FormController object called
frmMainController that'sstoredinafile called frmMainController. js.Allofyour

other FormController objects, FormControllerExtension objects, and so on, are similarly named.

© 2019 by Kony, Inc. All rights reserved 43 0f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

There are some objects whose name is exactly what you see in the References section. These are as
follows.

« Navigation Object
» TemplateController Object

Your code accesses these objects using the exact names you see here.

3.1 FormController Object

The code for the FormController object is created by the code generation tool for you. It communicates
with both the models for the data sources and the viewmodels for the forms.

You should not modify the source code for the FormController object. Instead, your app calls the
methods that the FormController object provides. However, most apps will need custom business
logic. You add that to the FormControllerExtension object rather than the FormController object itself.

The FormController object offers the following.
Methods

getCurrentForm Method

getCurrentFormFriendlyName Method

getPreviousForm Method

getPreviousFormFriendlyName Method

Properties

view

Note: If you change the default template of the controller for dependency injection, the methods
from the controller will not be displayed as part of intellisense to invoke functions in the Action
Editor.

© 2019 by Kony, Inc. All rights reserved 44 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

3.1.1 FormController Events

The FormController object provides the following events.

Note: While using the th1i s keyword (for example, this . view)inaFormController eventin
order to point to the current controller, you must ensure that the function is not a fat arrow function.
Because in fat arrow types of function declarations, the thi s keyword is taken from the parent

scope and might not point to the current FormController. For more information on this limitation,
click here.

getModel Event

Invoked when the Navigation object retrieves the model for the current FormController object.
Syntax

getModel () ;

Parameters
None.
Return Values
Returns the model object that is required for the form.

Remarks

Your app does not directly access the FormControl ler object foraform. If your app needs the
model associated withthe FormControl ler object, it can access the model by retrieving it through

an instance of the Navigat ion object. This event handler retrieves the model that you want it to use

for the form.

Example

getModel : function ()
{

© 2019 by Kony, Inc. All rights reserved 45 0f 92

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

var model = new CustomFormModel () ;

return model;

onCreateView Event

Called when the controller is ready to create the view.
Syntax

onCreateView () ;

Parameters

None.
Return Values

Returns either the file name of the form to use as the view or an instance of the form.
Remarks

Use this method to dynamically select which view to use for the controller when your app has more than

one view for a controller. For more information, see Sharing Controllers Between Forms.

Example 1

onCreateView : function ()
{

return "ViewFileName.]js");

Example 2

onCreateView : function ()

{
// Create an instance of the view to return or

// retrieve the instance from somewhere in your

© 2019 by Kony, Inc. All rights reserved 46 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

// code where you have stored it. In this example,
// it's saved in a variable called newlInstance.

return (viewInstance);

onDestroy Event

Triggered just before a form is destroyed.
Syntax

onDestroy () ;

Parameters
None.
Return Values
None
Remarks
Use this event callback handler function to perform cleanup tasks when a form is about to be destroyed.

Example

onDestroy : function ()
{
this.context = null;

this.model = null;

onNavigate Event

This event is invoked when you navigate from one form to another. This is a Form Controller event and is

used only in Kony Reference Architecture-based projects.

© 2019 by Kony, Inc. All rights reserved 47 of 92

http://docs.kony.com/konylibrary/visualizer/kony_ref_arch_api/Default.htm#FormController_Events.htm%23onNavigate
http://docs.kony.com/konylibrary/visualizer/kony_ref_arch_api/Default.htm

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Syntax

onNavigate (
context,

isBackNavigation)

Parameters
context [Object]
A JavaScript object that contains the data that the destination form requires after navigation.
isBackNavigation [Boolean]

This parameter determines whether you have clicked the back button or not. It has the value as true
when you click the back button and false when you do not click the back button.

Read/Write
Read + Write
Remarks

To navigate from one form to another, you must create a Navigation Object. This object navigates to the

destination form's controller. The form's controller in turn displays the view of the form.
This event is useful in the following scenarios:
« To prepare data that the destination form requires after the navigation.

« To pause the navigation if any asynchronous calls are in progress.

Note: The object that is sent as part of the onNavigate Event is accessible for all form lifecycle events.

Example

define ({

© 2019 by Kony, Inc. All rights reserved 48 of 92

http://docs.kony.com/konylibrary/visualizer/kony_ref_arch_api/Default.htm#Navigation_Object.htm

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

onNavigate: function (context, isBackNavigation) {
this.context = context;
this.pauseNavigation () ;
kony.net.invokeServiceAsync (url, this.callbackl);

s

callbackl: function(result) {

this.resumeNavigation() ;

)

Platform Availability

Available on all platforms

setModel Event

Invoked while navigating to a new form the model to set the form's updated model object.
Syntax

setModel (

model) ;

Parameters
model
The model object for the new form.
Return Values
None.
Remarks

Use this event callback handler to set a model for the form being navigated to.

© 2019 by Kony, Inc. All rights reserved 49 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example

setModel : function (model)

{

this.model = model;

3.1.2 FormController Methods

The FormController object contains the following methods.

getCurrentForm Method

Retrieves the name of the current form.
Syntax

getCurrentForm() ;

Parameters
None.
Return Values
Returns a string containing the name of the current form.

Example

ver currentForm = this.getCurrentForm() ;

getCurrentFormFriendlyName Method

Retrieves the friendly name of the current form.
Syntax

getCurrentFormFriendlyName () ;

© 2019 by Kony, Inc. All rights reserved 50 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Parameters
None.
Return Values
Returns a string containing the friendly name of the current form.

Example

ver currentFormFriendlyName= this.getCurrentFormFriendlyName () ;

getPreviousForm Method

Retrieves the name of the previous visible form.
Syntax

getPreviousForm() ;

Parameters
None.
Return Values

Returns a string containing the name of the previous visible form, or nu 1 1 if there is no previous visible

form.

Example

ver previousForm = this.getPreviousForm() ;

getPreviousFormFriendlyName Method

Retrieves the friendly name of the previous visible form.
Syntax

getPreviousFormFriendlyName () ;

© 2019 by Kony, Inc. All rights reserved 51 0f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Parameters
None.

Return Values

Returns a string containing the friendly name of the previous visible form, ornul 1 if there is no previous

visible form.

Example

ver previousFormFriendlyName = this.getPreviousFormFriendlyName () ;

pauseNavigation Method

Pauses when navigating from one form to another.
Syntax

pauseNavigation () ;

Parameters
None.
Return Values
None.

Remarks

Your app calls this method to pause when navigating from form to form and wait for tasks that need to be
completed before the new form is shown. The only time your app can call this function is in the onNavigate
event callback handler function, which you must provide. If your app calls it anywhere else, it does nothing.

To resume navigation, your app must call the resumeNavigation method.

© 2019 by Kony, Inc. All rights reserved 52 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example
onNavigate : function (context, isBackNavigation)
{
this.context = context;

this.pauseNavigation () ;

kony.net.invokeServiceAsync (url, this.callbackl);

callbackl: function (result)
{

this.resumeNavigation () ;

resumeNavigation Method

Resumes the process of navigating from form to form.
Syntax

resumeNavigation () ;

Parameters
None.
Return Values
None.

Remarks

When your app is navigating from form to form, it can pause the process of navigation by calling the
pauseNavigation method. After navigation has been paused, your app must call the

resumeNavigation methodto continue the navigation process and display the target form. If

pauseNavigation has not been called, this method does nothing.

© 2019 by Kony, Inc. All rights reserved 53 0f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Important: Failingto call resumeNavigation afteryourapp has called

pauseNavigation may resultinyourapp locking up.

Example
onNavigate : function (context, isBackNavigation)
{
this.context = context;

this.pauseNavigation () ;

kony.net.invokeServiceAsync (url, this.callbackl);

callbackl: function (result)
{

this.resumeNavigation () ;

3.1.3 FormController Properties

The FormController object contains the following properties.

view Property

Contains a reference to the FormController object's view.
Syntax
view
Type
Object
Read / Write

Read-only

© 2019 by Kony, Inc. All rights reserved 54 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Remarks
Your app can access the view usingthe syntax this.view.

Example

var view = this.view;

3.2 kony.model Namespace

The kony.model namespace contains the following API elements.

Constants

kony.model.ExceptionCode Constants

kony.model.ValidationType Constants

Objects

kony.model.Exception Object

Properties

code

message

name

kony.model.KonyApplicationContext Object

Methods

createModel Method

login Method

logout Method

© 2019 by Kony, Inc. All rights reserved 550f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

save
getByPrimaryKey
update
partialUpdate
remove
removeByID
getAll
customVerb

getByCriteria

3.2.1 kony.model Constants

The kony.model namespace provides the following constants.

kony.model.ExceptionCode Constants

Specifies the error code that occurred for the exception.

Constant Description

kony.model.ExceptionCode.CD_ERROR_CREATE An error occurred while performing the create

operation.
kony.model.ExceptionCode.CD_ERROR_ An error occurred while performing the operation
CUSTOMVERB specified by a custom verb.

kony.model.ExceptionCode.CD_ERROR_DELETE An error occurred while performing the delete

operation.

© 2019 by Kony, Inc. All rights reserved 56 of 92

3. References

Constant

kony.model.ExceptionCode.CD_ERROR_
DELETE_BY_PRIMARY_KEY

kony.model.ExceptionCode.CD_ERROR_FETCH

kony.model.ExceptionCode.CD_ERROR_
FETCHING_DATA_FOR_COLUMNS

kony.model.ExceptionCode.CD_ERROR_LOGIN_
FAILURE

kony.model.ExceptionCode.CD_ERROR_UPDATE

kony.model.ExceptionCode.CD_ERROR_
VALIDATION_CREATE

kony.model.ExceptionCode.CD_ERROR_
VALIDATION_UPDATE

Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Description

An error occurred while performing the delete by

primary key operation.

An error occurred while performing the fetch

operation.

An error occurred while fetching the data for the

specified columns.

An error occurred while trying to log in.

An error occurred while performing the update

operation.

An error occurred while performing the validation

create operation.

An error occurred while performing the validation

update operation.

kony.model.ValidationType Constants

Specifies the type of validation to be performed.

Constant

kony.model.constants.ValidationType.CREATE

kony.model.constants.ValidationType.UPDATE

Description

The operation creates a record in the
backend data source.

The operation updates a record in the
backend data source.

3.2.2 kony.model Objects

The kony.model provides the following objects.
kony.model.Exception Object

© 2019 by Kony, Inc. All rights reserved

57 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Properties

code

message

name

kony.model.KonyApplicationContext Object

Methods

createModel Method

login Method
logout Method

kony.model.Exception Object

The kony.model.Exception object simplifies exception handling for your app.

Properties

code

message

name
kony.model.Exception Properties

The kony.model.Exception object provides the following properties.

code Property

Version 1.4

Specifies the error code.

© 2019 by Kony, Inc. All rights reserved

58 of 92

3. References

Syntax

code
Type

Number
Read / Write

Read only

Remarks

Kony Reference Architecture SDK APl Programmer's Guide
Version 1.4

This property can only be set to one of the values in the kony.model.ExceptionCode constants.

message Property

Contains a description of the error message.

Syntax
message
Type
String
Read / Write

Read only

name Property

Contains the name of the exception
Syntax

name
Type

String

© 2019 by Kony, Inc. All rights reserved

59 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Read / Write

Read only

Version 1.4

kony.model.KonyApplicationContext Object

The kony.model.KonyApplicationContext class contains the following.

Methods

createModel Method

login Method

logout Method
kony.model.KonyApplicationContext Methods

The KonyApplicationContext provides the following methods.

kony.model.ApplicationContext.createModel Method

Creates a model using the specified inputs.
Syntax

kony.model.ApplicationContext.createModel (
entityName,
serviceName,
options,
metadataOptions,
successCallback,

errorCallback)

Parameters
entityName

A string that specifies the name of the model.

© 2019 by Kony, Inc. All rights reserved

60 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

serviceName

A string that contains the name of the object service that the model specified in the entityName
parameter belongs to.

options

A JavaScript object containing the access options for the service that the app is logging into. This

object contains one key, named acce s s. The values for this key can be either "online" or "offline".

metadataOptions

An object that contains parameters that the app passes to the Kony Reference Architecture framework
while fetching Kony Fabric metadata. The only parameter currently supported is "getFromServer"

whichcanbesetto t rue or false. Avalue of t rue forces the model to fetch the metadata from
the server rather than retrieve it from the cache. A value of £a 1 se allows the metadata to be fetched

from the cache. If "getFromServer" is set to true, then the metadata is refreshed and a new instance is
created.

successCallback

A JavaScript function, which you provide, that is automatically invoked when the model object is
created. The signature of this function is as follows.

successCallback (modelObject) ;
The modelObject parameter to this callback function contains the model object that was created.

errorCallback

A JavaScript function, which you provide, that is automatically invoked when the model object is not
created. The signature of this function is as follows.

loginErrorCallback (error) ;

The error parameter to this callback function holds a kony.model.Exception object.

Return Values

Returns the model object.

kony.model.ApplicationContext.login

© 2019 by Kony, Inc. All rights reserved 61 0f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Performs a login operation.
Syntax

kony.model.ApplicationContext.login (
params,
loginSucCallback,
loginErrCallback)

Parameters
params

A JavaScript object that holds key-value pairs specifying the login authorization information. The keys
in this object are as follows.

Key Value

authParams A JavaScript object that holds the
authorization parameters for logging into
the service. For more details, see
Remarks below.

options A JavaScript object containing the
access options for the service that the
app is logging into. This object contains

one key, named access. The values

for this key can be either "online" or
"offline".

identityServiceName A string that specifies the name of the
identity service that performs the
authentication.

loginSucCallback

© 2019 by Kony, Inc. All rights reserved 62 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

A JavaScript function, which you provide, that is automatically invoked when the login is successful.
The signature of this function is as follows.

loginSuccessCallback() ;

loginErrCallback

A JavaScript function, which you provide, that is automatically invoked when the login is not
successful. The signature of this function is as follows.

loginErrorCallback (err) ;

The errparameter to this callback function contains the error value and error message string for the
error that occurred.

Return Values
None.
Remarks

The params parameter contains key-value pairs that hold information needed to log into a server. The
authParams key in the params parameter is an object that also contains key-value pairs. The keys it

contains are given in the following table.

Key Value

userid A string containing
the User ID for the
account or service
that the app is logging
into.

password A string containing
the password for the
account or service
that the app is logging
into.

© 2019 by Kony, Inc. All rights reserved 63 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

The options key inthe params object is a JavaScript object that specifies the type of access. The key
name for selecting the type of access is "access". A value of "online" indicates that the app is logging into a
remote service that is not on the device, but rather on the network. The value "offline" means that the

service is on the device.

Example
var params = {
"authParams" : {
"userid" : "MyUserID",
"password" : "MyPassword"
s
options :{"access" :"online"},
"identityServiceName" : "TheldentityServiceName"

b

function loginSuccessCallback ()

{

// Your code goes here.

function loginErrorCallback (err)

{

// Your code goes here.

kony.model.ApplicationContext.login

(params, loginSuccessCallback, loginErrorCallback) ;

kony.model.KonyApplicationContext.logout Method

Performs a logout operation.

© 2019 by Kony, Inc. All rights reserved 64 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Syntax

logout (
successCallback,

errorCallback) ;

Parameters
successCallback

A JavaScript function, which you provide, that is automatically invoked when the logout is successful.
The signature of this function is as follows.

loginSuccessCallback() ;

errorCallback

A JavaScript function, which you provide, that is automatically invoked when the logout is not
successful. The signature of this function is as follows.

loginErrorCallback (err) ;

The errparameter to this callback function contains the error value and error message string for the
error that occurred.

Return Values
None
Remarks

This function clears all form controllers, models, and so forth from the
KonyApplicationContext object's application context. It then logs the app out of Kony Fabric

services that it is logged into.

Example

var appContext = kony.model.KonyApplicationContext.getAppInstance() ;
appContext.logout () ;

© 2019 by Kony, Inc. All rights reserved 65 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

3.3 kony.mvc Namespace

The kony . mvc namespace provides the following API elements.

« Kony mvc namespace enables your app to create a Navigation object, which it uses to navigate
from form controller to form controller.

Functions

« Navigation

3.3.1 kony.mvc Functions

The kony.mvc namespace contains the following function.

kony.mvc.Navigation Function

Creates an instance of the Navigation object.
Syntax

kony.mvc.Navigation (

friendlyName) ;

Parameters
friendlyName
The friendly name of the form that the Navigation object is to be created for.

Return Values
Returns a Navigation object on success, ornul 1 on failure.
Remarks

A form can have multiple Navigation objects, soitis possible foran app to call this function multiple

times on a form.

© 2019 by Kony, Inc. All rights reserved 66 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example

var Navigation = new kony.mvc.Navigation ("FormFriendlyName") ;

3.4 kony.mvc.registry Namespace

The kony.mvc.registry namespace provides the following APl elements

Functions

add Function

getViewName Function

getControllerName Function

remove Function

3.4.1 kony.mvc.registry Functions

The kony.mvc.registry namespace contains the following functions.

kony.mvc.registry.add Function

Enables you to add a new form name, along with its controller, extension controller, and friendly name, to the
registry.

Syntax 1

kony.mvc.registry.add (“friendlyName”, “formId”) ;
kony.mvc.registry.add (V“friendlyName”, “formId”, “formController”);
kony.mvc.registry.add (V“friendlyName”, “formId”, {“controllerName”
“formController” , “controllerType” : <controllerType>});
kony.mvc.registry.add (V“friendlyName”, “formId”, “formController”,

“formExtController”) ;

© 2019 by Kony, Inc. All rights reserved 67 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Syntax 2
kony.mvc.registry.add("friendlyName", "formId", {"controllerName" : "",
"controllerExtName" : "", "controllerType" : ""});

Parameters

friendlyName [string] [Mandatory]

You can assign a "friendly" name to the form, which will be easier for you to remember than the actual
formld. The friendlyName string maps the navigation path to the formld and its corresponding
controller.

formld [string] [Mandatory]

The name of the form. Given formld as "f1," the Framework automatically searches for the availability
of " f1.js" and "f1Controller.js" for initializations.

The following parameters are considered in the third parameter if it is a dictionary (Refer Syntax 2 and
Example for more information):

formController[string] [Optional]
The name of the file that contains the form controller.
formExtController [string] [Optional]

The name of the file that contains the form extension controller. You can use form extension controllers
to extend the functionality of the form.

controllerExtName [string] [Optional]
The name of the file that contains the extension controller.
controllerType [string] [Optional]

For data-driven forms, this parameter is kony.mvc.ModelFormController. You can inherit your own
controller from kony.mvc.FormController and provide the name here.

Return Values

Returns t rue if the form name is successfully added to the registry, otherwise it retums false.

© 2019 by Kony, Inc. All rights reserved 68 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Returns false if the same friendly name has already been registered.
Remarks

« If the friendlyName or the formName parameter (or both) is an empty string, nul 1, or undefined, this

function does nothing.

« If the formController parameter is nu 1 1, undefined, not provided, or is an empty string, the string in the
formld parameter is suffixed with the string "Controller." For example, if formldcontains the string "form1"
and the formController parameter is not provided, then "form1Controller" will used as the name of the

form controller file.

Example

kony.mvc.registry.add (
"friendlyName",
"formId",

{"controllerName" : "", "controllerExtName" : "", "controllerType" : ""});

kony.mvc.registry.getViewName

Retrieves the form or template name from the registered friendly name.

Syntax

kony.mvc.registry.getViewName (

friendlyName) ;

Parameters
friendlyName
The friendly name of the form to retrieve the name from.
Return Values

Returns a string containing the form name if the friendly name is found in the registry, ornul 1l ifitis not

found.

© 2019 by Kony, Inc. All rights reserved 69 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example

formName = kony.mvc.registry.getViewName ("Forml") ;

kony.mvc.registry.getControllerName

Retrieves the controller name from the registered friendly name.
Syntax

kony.mvc.registry.getControllerName (

friendlyName) ;

Parameters
friendlyName
The friendly name of the form to retrieve the name from.
Return Values

Returns a string containing the controller name if the friendly name is registered and the controller name is
found. Returns a string containing "<viewName>.Controller" if the friendly name is registered and the

controller name is not found. Returns nu 11 if the friendly name is not registered.

Example

kony.mvc.registry.getControllerName ("FriendlyName") ;

kony.mvc.registry.remove

Removes the name of a form controller from the registry.
Syntax

kony.mvc.registry.remove (

friendlyName) ;

© 2019 by Kony, Inc. All rights reserved 70 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Parameters
friendlyName
The friendly name of the form whose controller is to be removed.
Return Values
None.

Example

kony.mvc.registry.remove (FriendlyName") ;

3.5 Navigation Object

TheNavigation objectprovides yourapp with the ability to navigate from form to form. It does

this by navigating to a target form controller, which then displays the form's view. To create a
Navigation object, your app must call the kony.mvc.Navigation function.

Methods

navigate Method

3.5.1 Navigation Methods

The Navigation object provides the following methods.

getModel

Retrieves the model for the form.
Syntax

getModel () ;

Parameters

None.

© 2019 by Kony, Inc. All rights reserved 71 0f92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Return Values

Returns a JavaScript object that contains the model for the form. The model is either the model that the app
previously set or the model that is retrieved from the FormControl ler. This method triggers the

FormController.getModel event.

Remarks
This method retrieves the form's model.

Example

var formModel = navObject.getModel () ;

navigate Method

Performs a form navigation.
Syntax

navigate (

params) ;

Parameters
params
A JavaScript object containing key/value pairs that are passed to the target form from the current form.
Return Values
None.
Remarks

The params parameter is passed to all of the lifecycle events, such as preShow, postShow, and init, on the

target form.

© 2019 by Kony, Inc. All rights reserved 72 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example

var x = new kony.mvc.Navigation (“friendlyName/formName”, model) ;

x.navigate (params) ;

setModel

Sets the model for the form being navigated to.
Syntax

setModel (

newModel

Parameters
newModel
A JavaScript object that holds the model for the target form.
Return Values
None.
Remarks

This method sets the model of the target form, which is the form being navigated to. It triggers the
FormController.setModel event.

3.6 TemplateController Object

The code for the TemplateController object is created by the code generation tool for you. It

communicates with both the models for the data sources and the viewmodels for the forms.

You should not modify the source code for the TemplateController object. Instead, your app calls the
methods that the TemplateController object provides.

© 2019 by Kony, Inc. All rights reserved 73 0f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

When your app passes a template as a string to a widget, the widget creates the corresponding
TemplateController object when it needs the template's view. It automatically searches for a
TemplateController name that is mapped in the registry for that template. If it doesn't find a mapping, it
searches for a template controller whose file name is of the form <templateName>Controller.js, where
<templateName> is the name of the template. It then creates the TemplateController object for that
template.

The TemplateController object offers the following.
Methods

executeOnParent Method

Properties

view Property

3.6.1 TemplateController Events

The TemplateController object supports the following events.

onCreateView Event

Called when the controller is ready to create the view.
Syntax

onCreateView () ;

Parameters
None.
Return Values

Returns either the file name of the template to use as the view or an instance of the template.

© 2019 by Kony, Inc. All rights reserved 74 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Remarks

Use this method to dynamically select which view to use for the controller when your app has more than

one view for a controller. For more information, see Sharing Controllers Between Forms.

Example 1

onCreateView : function ()

{

return "ViewFileName.js");

Example 2

onCreateView : function ()

{
// Create an instance of the view to return or
// retrieve the instance from somewhere in your
// code where you have stored it. In this example,
// it's saved in a variable called newInstance.

return (viewInstance);

onDestroy Event

Triggered just before a template is destroyed.
Syntax

onDestroy () ;

Parameters
None.
Return Values

None

© 2019 by Kony, Inc. All rights reserved 750f 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Remarks

Use this event callback handler function to perform cleanup tasks when a template is about to be
destroyed.

Example

onDestroy : function ()
{
this.context = null;

this.model = null;

onViewCreated

Triggered when the view is created.
Syntax

onViewCreated () ;

Parameters
None.
Return Values
None.

Remarks

This method is automatically invoked just after the onCreateView event has finished and the template's
view has been created. Developers can use this method to configure the template.

Example

onViewCreated: function ()

{

this.view.addGestureRecognizer (

© 2019 by Kony, Inc. All rights reserved 76 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

constants.GESTURE TYPE SWIPE,

{fingers: 1},

function (widgetRef, gesturelnfo, context)
{

alert ("Swipe Gesture");

3.6.2 TemplateController Methods

The TemplateController object provides the following method.

executeOnParent Method

Executes the specified method of the parent object.
Syntax

executeOnParent (
methodName,

methodParams) ;

Parameters
methodName
A string containing the name of the parent's method.
methodParams
An optional list of parameters to pass to the method specified by the methodName parameter.
Return Values

None.

© 2019 by Kony, Inc. All rights reserved 77 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Remarks

The parent of this object is always a FormController object. This method should only be called from sub-

view controllers.

Example

this.executeOnParent (“funcl”, “paraml”, "param2");

getCurrentView Method

Retrieves the current view for the template controller.
Syntax

getCurrentView () ;

Parameters
None.
Return Values
Returns the template controller's view.

Example

var currentView = tmpController.getCurrentView () ;

3.6.3 TemplateController Properties

The TemplateController object contains the following property.

view Property

Contains a reference to the TemplateController object's view.

© 2019 by Kony, Inc. All rights reserved 78 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Read / Write
Read-only
Remarks

Your app can access the view usingthe syntax this.view.

Example

var view = this.view;

3.7 Deprecated

The APl elements in this section are deprecated and should not be used in the development of new

software. The documentation in this section is provided to help with the maintenance of legacy
software.

3.7.1 kony.sdk.mvvm Namespace

The kony.sdk.mvvm namespace is now deprecated. New software should not use anything in this
namespace. Instead, use the kony.model namespace.

Documentation on the kony.sdk.mvvm namespace is provided here to assist with maintaining legacy
software. The kony.sdk.mvvm namespace contains the following API elements.

Constants

« kony.sdk.mvvm.OperationType Constants

© 2019 by Kony, Inc. All rights reserved 79 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Objects

« kony.sdk.mvvm.KonyApplicationContext Object

« Methods

« appServicesLogin Method

« dismissLoadingScreen Method

« getAllIFormControllers Method

« getApplnstance Method

« getFactorySharedlnstance Method

o getFormController Method

« getMetadataStore Method

« getModel Method

« getObjectService Method

« init Method

« logout Method

« showlLoadingScreen Method

kony.sdk.mvvm Constants
The kony.sdk.mvvm namespace provides the following constants.

kony.sdk.mvvm.OperationType Constants

Specifies the operation to be performed.

© 2019 by Kony, Inc. All rights reserved 80 0of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Constant
kony.sdk.mvvm.OperationType.ADD

kony.sdk.mvvm.OperationType.FILTER_BY_PRIMARY _
KEY

kony.sdk.mvvm.OperationType.NO_FILTER

Remarks

Version 1.4

Description
Add a data model object.

The operation is filtered by the data object's
primary key.

The operation is not filtered.

Use these constants to specify data model operations when performing form navigation. For more

information, see kony.sdk.mvvm.NavigationObject Object.

kony.sdk.mvvm Objects

The kony.sdk.mvvm provides the following objects.

Objects

« kony.sdk.mvvm.KonyApplicationContext Object

« Methods

« appServicesLogin Method

« dismissLoadingScreen Method

« getAllIFormControllers Method

« getApplnstance Method

« getFactorySharedlnstance Method

« getFormController Method

« getMetadataStore Method

« getModel Method

© 2019 by Kony, Inc. All rights reserved

81 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

getObjectService Method

« init Method

» logout Method

showLoadingScreen Method

kony.sdk.mvvm.KonyApplicationContext Object
The kony.sdk.mvvm.KonyApplicationContext class contains the following.
Methods

« appServiceslLogin Method

« dismissLoadingScreen Method

« getAllFormControllers Method

« getApplnstance Method

« getFactorySharedInstance Method

» getFormController Method

« getMetadataStore Method

« getModel Method

« getObjectService Method

« init Method

« logout Method

« showlLoadingScreen Method

© 2019 by Kony, Inc. All rights reserved 820f92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

kony.sdk.mvvm.KonyApplicationContext Methods

The KonyApplicationContext provides the following methods.

kony.sdk.mvvm.KonyApplicationContext.appServicesLogin Method

Performs initialization, registration, and login services for an app.
Syntax

kony.sdk.mvvm.KonyApplicationContext.appServicesLogin (
params,
loginSuccessCallback,

loginErrorCallback) ;

Parameters
params

An object containing the authorization parameter and options, as well as the synchronization
configuration information. This object uses the following format.

« authParams: An object containing a userlD and a password.

» options: An object specifying the type of access that the app uses. The object contains one
key, called "access", which can have a value of either "online" or "offline".

« syncOptions: An object containing synchronization configuration information.
loginSuccessCallback
An optional event handler function that is called upon success.
loginErrorCallback

An optional event handler function that is called if the appServicesLogin function fails.

Return Values

None.

© 2019 by Kony, Inc. All rights reserved 83 0f92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Remarks

This method performs initialization, configuration, and login services. It calls the

kony.sdk.mvvm.KonyApplicationContext.init method. If your app invokes appServicesLogin,it

does not needtocall kony.sdk.mvvm.KonyApplicationContext.init. The

appServicesLogin method also registers and starts the AuthenticationServiceManage and
MetadataServiceManager objects. Therefore, this app must have identity services configured prior to

calingappServicesLogin.

In the case of an app that uses offline storage, this method also registers and starts the SyncManager

object.

Your app calls this method directly by using its fully-qualified name.

Example
params = {

"authParams" : {
"userid" : "Aard",
"password" : "Vark"

}y

"options" :{
{"access":"online"}

by

"syncOptions" : {

"syncConfig": {
"batchsize"™ : 10000000,

// Other sync configuration params.

kony.sdk.mvvm.KonyApplicationContext.appServicesLogin (params) ;

kony.sdk.mvvm.KonyApplicationContext.dismissLoadingScreen Method

Dismisses a loading screen that was previously displayed using the showLoadingScreen method.

© 2019 by Kony, Inc. All rights reserved 84 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Syntax

dismissLoadingScreen () ;

Parameters
None.
Return Values
None.

Remarks

Typically, your app calls the showLoadingScreen method to display a screen that lets the user know that it

is loading data and that the user must wait. After the data has been loaded, your app calls this method to
dismiss the loading screen.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;

appContext.dismissLoadingScreen () ;

kony.sdk.mvvm.KonyApplicationContext.getAllFormControllers Method

Retrieves controler objects for every form in the current application context.
Syntax

getAllFormControllers () ;

Parameters
None.
Return Values

Returns an object containing all of the form controllers in the application context. The object contains a
group of key-value pairs in which the form ID is the key and the value is the controller for the specified form.

© 2019 by Kony, Inc. All rights reserved 850f92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;

var allControllers = appContext.getFormControllers():;

kony.sdk.mvvm.KonyApplicationContext.getApplnstance Method

Retrieves in instance of a KonyApplicationContext object.
Syntax

kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;

Parameters
None.
Return Values
Returns a kony.sdk.mvvm.KonyApplicationContext object.
Remarks
Your app calls this function any time it needs an instance of the global KonyApplicationContext object.
Your app calls this method directly by using its fully-qualified name.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;

kony.sdk.mvvm.KonyApplicationContext.getFactorySharedInstance Method

Retrieves an instance of the AppFactory object.
Syntax

getFactorySharedInstance () ;

© 2019 by Kony, Inc. All rights reserved 86 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Parameters
None.
Return Values
Returns a kony.sdk.mvvm.AppFactory object.
Remarks
Apps use the AppFactory object to instantiate instances of classes in the kony.sdk.mvvm namespace.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;

var appFactoryInstance = appContext.getFactorySharedInstance() ;

kony.sdk.mvvm.KonyApplicationContext.getFormController Method

Retrieves the form controller for the specified form.
Syntax

getFormController (

formId)

Parameters
formlD
A string containing the ID of the form.
Return Values
Returns the controller associated with the specified form.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance() ;
appContext.getFormController (formId) ;

© 2019 by Kony, Inc. All rights reserved 87 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

kony.sdk.mvvm.KonyApplicationContext.getMetadataStore Method

Retrieves a kony.sdk.mvvm.MetadataStore object from the application's context.
Syntax

kony.sdk.mvvm.KonyApplicationContext.getAppInstance () .getMetadataStore () ;

Parameters
None.
Return Values
Returns the MetadataStore object from the app's context.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;
var appMetadataStore = appContext.getMetadataStore () ;

kony.sdk.mvvm.KonyApplicationContext.getModel Method

Retrieves the specified model.
Syntax

getModel (
entityName,
serviceName,

options) ;

Parameters
entityName
A string containing the name of the model.

serviceName

© 2019 by Kony, Inc. All rights reserved 88 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

A string that contains the name of the object service that the model in the entityName parameter
belongs to.

options

An object that defines the access options for the model. The object contains one key, called "access",
which can have a value of either "online" or "offline".

Return Values
Returns the specified model.
Remarks

Apps based on theKony Reference Architecture SDK use models to abstract the access to data sources.
Data sources can include both local data storage on the device and remote data services that your app
accesses across the Internet. For each data source, there is a model that provides a standardized interface
to the data source. This function returns the model associated with a data source.

Example
var modelName = "MyModel";
var serviceName = "MyKony FabricSerice";
var serviceOptions = {"access":"online"};

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance() ;
var currentModel = appContext.getModel

(modelName, serviceName, serviceOptions) ;

kony.sdk.mvvm.KonyApplicationContext.getObjectService Method

Retrieves the specified object service.
Syntax

getObjectService (
options,

objectServiceName) ;

Parameters

options

© 2019 by Kony, Inc. All rights reserved 89 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

A JavaScript object that specifies the access options for the service. The object contains one key,
called "access", which can have a value of either "online" or "offline".

objectServiceName
The name of the object service to retrieve.
Return Values

Returns the specified object service.

Example
var serviceName = "MyKony FabricSerice";
var serviceOptions = {"access":"online"};

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance() ;

var onlineObjSer = appContext.getObjectService (serviceOptions, serviceName) ;

kony.sdk.mvvm.KonyApplicationContext.init Method

Initializes an instance of a KonyApplicationContext object.
Syntax

kony.sdk.mvvm.KonyApplicationContext.init () ;

Parameters
None.
Return Values
None.

Remarks

Youmust callthe init method before you can use any other method that this object provides. If you do

not call this method first, all of the other methods of this class will return an error.

Your app calls this method directly by using its fully-qualified name.

© 2019 by Kony, Inc. All rights reserved 90 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Example

kony.sdk.mvvm.KonyApplicationContext.init () ;

kony.sdk.mvvm.KonyApplicationContext.logout Method

Performs a logout operation.
Syntax

logout (
successCallback,

errorCallback) ;

Parameters
successCallback
An event handler function that is called when the logout operation is successful.
errorCallback
An event handler function that is called when the logout operation results in an error.
Return Values
None
Remarks

This function clears all form controllers, models, and so forth from the KonyApplicationContext object's
application context. It then logs the app out of Kony Fabric services that it is logged into.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;
appContext.logout () ;

kony.sdk.mvvm.KonyApplicationContext.showLoadingScreen Method

© 2019 by Kony, Inc. All rights reserved 91 of 92

3. References Kony Reference Architecture SDK APl Programmer's Guide

Version 1.4

Displays a loading screen with the specified text.
Syntax

showLoadingScreen (

text) ;

Parameters
text
A string containing the text to display
Return Values
None.
Remarks

You app calls this method when it needs to display a screen informing the user that data is loading. The
typical use case for this method is when your app is getting data from a remote service across the Internet.

This method displays the loading screen with the message specified in the text parameter and then returns.
When the data is loaded, call the dismissLoadingScreen method to dismiss the loading screen.

Example

var text = "Quite please, I'm thinking..."
var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance () ;

appContext.showLoadingScreen (text) ;

© 2019 by Kony, Inc. All rights reserved 92 of 92

	1. Kony Reference Architecture API Programmers' Guide
	2. Overviews
	2.1 Kony Reference Architecture: Decoded
	2.2 Advantages of Using Kony Reference Architecture
	2.3 A Deeper Look at Kony Reference Architecture
	2.3.1 Views
	2.3.2 Controllers
	2.3.3 Models
	2.3.4 Views and Controllers
	2.3.5 Models and Controllers

	2.4 Kony Reference Architecture Features
	2.4.1 Models, Views, and Controllers in Action
	2.4.2 Components and Kony Reference Architecture
	2.4.3 Form Navigation
	2.4.4 Dynamic Module Loading
	2.4.5 Define Namespaces in Apps
	2.4.6 Access Kony Fabric Services through Kony Reference Architecture
	2.4.7 Use Kony Reference Architecture for Kony Wearables Apps

	2.5 Create an App with Kony Reference Architecture
	2.5.1 Build Your Front-End Client App
	2.5.2 Build Your App's Data Model
	2.5.3 Import Kony Quantum Visualizer Apps into Kony Visualizer Enterprise
	2.5.4 A Sample FormController

	3. References
	3.1 FormController Object
	3.1.1 FormController Events
	3.1.2 FormController Methods
	3.1.3 FormController Properties

	3.2 kony.model Namespace
	3.2.1 kony.model Constants
	3.2.2 kony.model Objects

	3.3 kony.mvc Namespace
	3.3.1 kony.mvc Functions

	3.4 kony.mvc.registry Namespace
	3.4.1 kony.mvc.registry Functions

	3.5 Navigation Object
	3.5.1 Navigation Methods

	3.6 TemplateController Object
	3.6.1 TemplateController Events
	3.6.2 TemplateController Methods
	3.6.3 TemplateController Properties

	3.7 Deprecated
	3.7.1 kony.sdk.mvvm Namespace

