
Kony Reference Architecture SDK

API Programmers' Guide

Release V8 SP4

Document Relevance and Accuracy

This document is considered relevant to the Release stated on this title page and the document version stated on the Revision History page.
Remember to always view and download the latest document version relevant to the software release you are using.

© 2019 by Kony, Inc. All rights reserved 1 of 92

Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Copyright © 2019 Kony, Inc.

All rights reserved.

October, 2019

This document contains information proprietary to Kony, Inc., is bound by the Kony license

agreements, and may not be used except in the context of understanding the use and methods of

Kony, Inc., software without prior, express, written permission. Kony, Empowering Everywhere, Kony

Fabric, Kony Nitro, and Kony Visualizer are trademarks of Kony, Inc. MobileFabric is a registered

trademark of Kony, Inc. Microsoft, theMicrosoft logo, Internet Explorer, Windows, andWindows Vista

are registered trademarks of Microsoft Corporation. Apple, the Apple logo, iTunes, iPhone, iPad, OS

X, Objective-C, Safari, Apple Pay, Apple Watch, and Xcode are trademarks or registered trademarks

of Apple, Inc. Google, the Google logo, Android, and the Android logo are registered trademarks of

Google, Inc. Chrome is a trademark of Google, Inc. BlackBerry, PlayBook, Research in Motion, and

RIM are registered trademarks of BlackBerry. SAP® and SAP® Business Suite® are registered

trademarks of SAP SE in Germany and in several other countries. All other terms, trademarks, or

service marks mentioned in this document have been capitalized and are to be considered the

property of their respective owners.

© 2019 by Kony, Inc. All rights reserved 2 of 92

Kony Reference Architecture Programmer's Guide

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 3 of 92

Revision History

Date Document Version Description of Releases and Updates

12/18/2017 1.1 Updated for release with Kony Visualizer V8 SP1.

09/21/2017 1.0 Updated for release with Kony Visualizer V8.

Kony Reference Architecture Programmer's Guide

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 4 of 92

Table of Contents

1. Kony Reference Architecture API Programmers' Guide 6

2. Overviews 7

2.1 KonyReference Architecture: Decoded 8

2.2 Advantages of Using KonyReference Architecture 11

2.3 A Deeper Look at KonyReference Architecture 13

2.3.1 Views 15

2.3.2 Controllers 16

2.3.3 Models 17

2.3.4 Views and Controllers 18

2.3.5 Models and Controllers 24

2.4 KonyReference Architecture Features 24

2.4.1 Models, Views, and Controllers in Action 25

2.4.2 Components and KonyReference Architecture 26

2.4.3 FormNavigation 26

2.4.4 DynamicModule Loading 30

2.4.5 Define Namespaces in Apps 31

2.4.6 Access Kony Fabric Services through KonyReference Architecture 32

2.4.7 Use KonyReference Architecture for KonyWearables Apps 33

2.5 Create an App with KonyReference Architecture 33

2.5.1 Build Your Front-End Client App 34

2.5.2 Build Your App's DataModel 36

2.5.3 Import KonyQuantumVisualizer Apps into Kony Visualizer Enterprise 40

Kony Reference Architecture Programmer's Guide

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 5 of 92

2.5.4 A Sample FormController 41

3. References 43

3.1 FormController Object 44

3.1.1 FormController Events 45

3.1.2 FormController Methods 50

3.1.3 FormController Properties 54

3.2 kony.model Namespace 55

3.2.1 kony.model Constants 56

3.2.2 kony.model Objects 57

3.3 kony.mvcNamespace 66

3.3.1 kony.mvc Functions 66

3.4 kony.mvc.registry Namespace 67

3.4.1 kony.mvc.registry Functions 67

3.5 Navigation Object 71

3.5.1 NavigationMethods 71

3.6 TemplateController Object 73

3.6.1 TemplateController Events 74

3.6.2 TemplateController Methods 77

3.6.3 TemplateController Properties 78

3.7 Deprecated 79

3.7.1 kony.sdk.mvvmNamespace 79

Kony Reference Architecture Programmer's Guide

Copyright © 2019 Kony, Inc. All Rights Reserved. Page 6 of 92

1. Kony Reference Architecture API Programmers' Guide

Kony Reference Architecture is an integrated set of development tools that enables you

to build modularized apps and increase your code reuse. This architectural pattern lets

designers, front-end app developers, and back-end service developers to work in

parallel on the same app.

Kony Reference Architecture also enables you to create apps that you can deploy

across many hardware platforms more rapidly than by using traditional JavaScript

application-development techniques. Kony Reference Architecture provides a set of

components and tools produced by Kony, Inc. that enables you to build apps in a highly

modular fashion.

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

2. Overviews

Earlier, Kony appswere developed only with the Freeform JavaScript technique. JavaScript is a

powerful language that provides developers with a lot of flexibility. It is an extremely accessible

language that allows developers to start a project easily. However, all of these JavaScript features can

create problems as a project grows in size and complexity. FromKony Visualizer 7.3 onwards, an

MVC-based Reference Architecture has been integrated directly in to Kony Visualizer, which helps to

improve the organization and consistency of the application code.

While developing applications by using the traditional Freeform JavaScript approach, developers had

to heavily customize applications. This customization helped to overcome issues such as the usage of

a large number of forms in the application code, the presence of global functions, and a lack of

separation between the business logic and UI components. The KonyReference Architecture

mechanism takes these customized approaches to the next level by providing a standard in-built

architecture to create apps.

KonyReference Architecture allows you to create a separate Presentation layer. This Presentation

layer enables a clear distinction between back-end objects, whichmodel the perception of the real

world, and presentation objects, which are the UI elements that appear on the screen. Furthermore,

this separation helps you to avoidmuddled dependencies and to keep a clear separation among app

components.

© 2019 by Kony, Inc. All rights reserved 7 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateNewProject.htm

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

While you develop apps by using Kony Visualizer and Kony Fabric, it is not mandatory to use Kony

Reference Architecture. You can create apps by using Freeform JavaScript. You can, however, also

use KonyReference Architecture to develop apps, thereby leveraging the numerous advantages that

this framework provides.

The following topics explain the overviews of KonyReference Architecture:

l KonyReference Architecture: Decoded

l Advantages of Using KonyReference Architecture

l A Deeper Look at KonyReference Architecture

l Create an App with KonyReference Architecture

2.1 Kony Reference Architecture: Decoded

KonyReference Architecture allows you to develop highlymodular and structured apps. Traditional

JavaScript development results in the creation of muddled and unstructured apps, which introduce

challenges as the apps grow in size and complexity. In a traditional JavaScript app, every element is

global and can be accessed from anywhere in the program. Apps developed with KonyReference

Architecture, on the other hand, are highly structured even though they are still written in JavaScript.

As a result, you can write highly reusable codemodules that you can incorporate intomany apps.

The following diagrams illustrate the differences between traditional Free Form JS app development

and app development by using KonyReference Architecture.

© 2019 by Kony, Inc. All rights reserved 8 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateNewProject.htm
https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateKRAProject.htm

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

© 2019 by Kony, Inc. All rights reserved 9 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

The diagrams show that because virtually everything is global in the traditional JavaScript model, any

form could invoke any JavaScript module or any SDK function at any time. The result is that apps are

nearly impossible to develop in amodular style. Code reuse is low and each new app often has to be

rewritten from scratch, even if a previous app contained similar functionalities.

However, under Kony's implementation of theMVC architecture, KonyReference Architecture

structures app elements into three distinct components: Model, View, and Controller. This leads to

benefits such as a structured separation of the code, parallel development of each app component,

reduced complexity, and easier testingmechanism. For detailed information on the several

advantages of using KonyReference Architecture, click here.

The functionality of amotorbike is a real-world example for which theMVC architecture components

can be explained. Every bike consists of the following threemajor units:

© 2019 by Kony, Inc. All rights reserved 10 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

l View = User Interface (gears, suspension, seat, brake, clutch, exhaust nozzle)

l Model = Storage (fuel tank)

l Controller = Mechanism (engine)

2.2 Advantages of Using Kony Reference Architecture

l Ease of use: App developers have a shorter learning curve while using KonyReference

Architecture. This is because each developer needs to understand only the correspondingMVC

component that he/she is developing. So, UI designers need to learn about only the View, the

back-end developers have to know only about theModel, and the developers who create the

app's business logic need to understand the Controller.

l Get started easily: KonyReference Architecture provides code generation tools that help you

to quickly get started with your app-development process. These tools automatically create

KonyReference Architecture classes that your app needs to access its services. You do not

have to create these classes, so you can proceed directly to writing the business logic of your

app.

l Automatic generation of app components: Kony Visualizer automatically generatesmost of

the components of an app that is created under KonyReference Architecture. The auto-

generated objects provide straightforward and easily understandable interfaces. This results in

the abstraction of most of the complexity of the app from both developers and customers.

l Seamless integration with Kony Fabric: If your app requires the use of back-end data

services, KonyReference Architecture provides a hassle-free integration with Kony Fabric.

Your KonyReference Architecture app can connect to the back-end data services available in

Kony Fabric, with very little effort on your part.

l Parallel app development: As KonyReference Architecture segregates all the elements of an

app into threemajor units, it enables the development of both the front end and back end of the

app in parallel. For instance, front-end developers do not have to wait until the back-end

services of the app are implemented before they can develop the app. They can usemock

objects services that simulate the app's back-end functionality while they develop the front end

© 2019 by Kony, Inc. All rights reserved 11 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

of the app. Likewise, back-end developers can start development without needing any type of

integration efforts with the app, until both the UI elements and the back-end services are in a

stable state of development.

l Faster app development: The parallel app development feature of KonyReference

Architecture logically leads to the reduction in the time and effort required to develop an app. In

addition, the use of KonyReference Architecture speeds up your app development by avoiding

to perform repetitive tasks such aswriting code to fetch data or to set the value of widget

properties. Instead, you can use declarative JSON data bindings to connect the fields in widgets

to fields in data sources, even if those data sources are on remote servers. You do not have to

write the code to update widget fields; it is generated automatically.

l Code Separation and Reuse: KonyReference Architecture enables better code separation

and reuse. Other development methods do not help you to encapsulate the JavaScript business

logic of your apps. In other models, business logic, presentation logic, and navigation logic are

often intermixed. Thismakes it difficult to reuse apps, in whole or in part, in other contexts.

For example, suppose you develop banking services apps for banks. Using other architectures,

the code for the business logic typically resides in the same codemodules as the code for the

navigation logic, presentation logic, or both. As a result, you will not be able to reuse the code

from previous apps. Instead, you will probably need to start the app-development process from

scratch.

With KonyReference Architecture, however, you can completely change the user interface and

navigation logic when you write a new banking app, without havingmuch impact on the

business logic at all. KonyReference Architecture separates all three types of program logic into

different modules, which each have definite interfaces to encapsulate their internal functionality.

This featuremakes it easy to performmajor changes to one part of the app, without breaking the

rest of it. Presentation objects are completely separate from domain objects and business logic

objects; so your app could potentially even support multiple presentations, possibly even

simultaneously.

l Designers, developers, and testers can work simultaneously: KonyReference Architecture

lets designers and developers to easily work on their specific app components, without

© 2019 by Kony, Inc. All rights reserved 12 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

interfering with each other's work. Designers can create the user interface, iteratively improve

the design, and perform all the testing they need to without impacting code developers on the

project. Likewise, developers can write, revise, and test the app's business logic without having

to worry about the presentation of the user interface. Furthermore, testers can test separate

pieces of the app without waiting for the whole app to be complete. For instance, they can test

the business logic even if the user interface has not been built. Or, they can test the user

interface and navigation logic, regardless of whether or not the app's core business logic has

been implemented.

l ORM capabilities: Asmany real-world apps generally usemany remote data sources and

services, object relationalmapping (ORM) plays a critical role in app design and development.

Object relationalmapping (ORM) is amechanism that makes it possible to address, access, and

manipulate objects without having to consider how those objects relate to their data sources.

KonyReference Architecture simplifiesORM tasks by providingmethods to discover ORM

metadata. Your app can also use KonyReference Architecturemethods to auto-generate ORM

queries.

2.3 A Deeper Look at Kony Reference Architecture

This section provides amore detailed examination of how KonyReference Architecture works.

The following diagram shows a detailed presentation of theMVC architecture used by Kony

Reference Architecture.

© 2019 by Kony, Inc. All rights reserved 13 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

In KonyReference Architecture , the actual implementation of theMVC architecture generally uses

forms, with their widgets, as the View. The Controller and theModel are JavaScript codemodules that

implement their respective functionality.

Both the Controller and theModel are JavaScript modules. Kony Visualizer has a default naming

scheme for your app's objects and files. So if you create a form in Kony Visualizer and set its name to

frmLogin, then the Controller for that form is calledformLoginController and it will be

stored in a file calledfrmLoginController.js. Likewise, the file for theModel is named

frmLoginModel.js. You can change these names in Kony Visualizer if you want to.

The default naming scheme is important to keep inmind when you're using the References section of

this SDK's documentation. For instance, the References section contains documentation for the

following objects.

l FormControllerObject

l TemplateController Object

© 2019 by Kony, Inc. All rights reserved 14 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Youwill not actually find objects with these names in your code. Instead, under the default naming

scheme, you will find names such as those used above. That is, if you name your formfrmLogin,

then the FormController object for that form is calledfrmLoginController. And if you have a

form calledfrmMain, then that formwill have a FormController object called

frmMainController that's stored in a file calledfrmMainController.js. All of your

other FormController objects and TemplateController objects will be similarly named.

Note that there are some objects whose name is exactly what you see in the References section.

These are as follows:

l kony.Model.Exception Object

l kony.Model.KonyApplicationContext Object

l Navigation Object

Your code accesses these objects by using appropriate names.

2.3.1 Views

Views in an app can be forms, templates, or masters. Apps under KonyReference Architecturemust

have at least one form that functions as a View. More typically, apps have several forms, each one

containing a variety of widgets for displaying information and for enabling user interaction. You create

your app's forms in Kony Visualizer and add widgets as needed.

Templates enable you to provide your app with a uniform user interface. For instance, you can create

a template for all of the buttons your app displays tomake them all have the same colors, fonts, and

shapes. If youmake changes to the template, the changes propagate to all of the buttons that you

have applied the template to.

Masters are a type of master form. In someways they are similar to templates in that they provide a

rapid way to add a standard user interface element to your app. However, masters are a forms.

Therefore, you can encapsulatemore into amaster than you can encapsulate into a template. When

buildingmasters, you can add in forms, widgets, templates, code, and even other masters. This

enables you to build highly complex standard components that you can just drop into asmany projects

as you want.

© 2019 by Kony, Inc. All rights reserved 15 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

For example, you could create amaster that provides all of the user interface elements and code

needed to log into backend services that your company offers. Once thismaster is built and tested, you

can easily add it to any app that you create, thus saving yourself large amounts of time.

Views are never global under KonyReference Architecture . They can only be accessed by their

Controllers. In fact, each View is stored in amember variable in the class of its Controller.

Kony Visualizer stores the forms for your Views in the Forms folder under the respective channels that

you're developing your app for. So, for instance, forms for mobile devices are stored in a Forms folder

under theMobile channel.

2.3.2 Controllers

Every View requires an associated Controller. Therefore, your app's code can have formControllers,

master Controllers, and template Controllers in it. They are all implemented as JavaScript modules.

Controllers contain the business logic of an app. They communicate with the dataModel objects to

retrieve, update, and process the app's data. Controller can communicate with asmanyModels as

needed.

WhenControllers operate on an app's data, they also send the data to the View to be displayed in the

corresponding form, template, or master. In this way, it updates the user interface whenever there is a

change in the displayed data from theModel.

In addition to formControllers and template Controllers, KonyReference Architecture also provides

Controller extensions. You can write Controller extensions in JavaScript modules to provide

specialized or enhanced functionality for components. For example, suppose that you create amaster

that encapsulates all of the functionality for logging onto your backend database. Imagine that you are

creating a new app and you drop the loginmaster into your new app. Now you want to add the ability

to log in using Facebook.With a Controller extension, you can add the Facebook login functionality to

your loginmaster without changing the base loginmaster itself. You just add in some new UI elements

and add the new functionality for logging in with Facebook to a Controller extension that you write.

That way, none of your new code impacts the standard loginmaster that you've created and that you

use in all of your apps. Each individual app can enhance the standard loginmaster in anyway you

need without you having tomodify the standard loginmaster itself.

Controllers for Views are typically stored together with their forms, as the following figure shows.

© 2019 by Kony, Inc. All rights reserved 16 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

However, shared Controllers are stored in theShared folder, which appears after you create a

shared Controller. When it is empty, theShared folder is not shown.

2.3.3 Models

It's often the case that apps communicate with, retrieve data from, and updatemultiple data sources.

Each data source is represented to the app as aModel. Models encapsulate data sources andmake it

possible for your app to access them in a standardized way. The data sources that Models

encapsulate can be on the user's device or remotely accessible across the Internet.

Models are optional in your apps. Simple appsmight not use them. For example, a calculator app

would not needModels because the data it operates on is probably nothingmore than a few variables

containing some numbers.

Most enterprise-level apps useModels to interface to backend data sources. Typically, developers

who create their appswith Kony Visualizer will also use Kony Fabric to create their server-side apps

that provide access to their backend data sources. This is not required, it's just the easiest way to build

your app. If you decide to use Kony Fabric for your backend app, you can get it to generate your

Models for you. More specifically, you create your backend app by building object serviceswith Kony

Fabric . Utilizing the Kony Fabric console, you can then generateModels, called object Models, that

provide your front-end Kony Visualizer app with access to your backend app's object services. After

you generate your object Models for all of your backend data sources, Kony Visualizer downloads

them into your front-end KonyReference Architecture project that you are building in Kony Visualizer

on your local development PC . The object Models provide your front-end app with code that enables

the app to retrieve data from the backend object services, update, create, or delete the data, and save

the changes to the backend object services.

One of themany advantages of usingModels to represent your data sources is that designers and

developers working on the front-end app don't have to wait until the backend Kony Fabric app is

complete before they start their work. Developers on the front-end app can build objects that provide

mock services to the app. That is, developers can createModels to use in the front-end app that

simulate the interaction that the front-end KonyReference Architecture app will have with the backend

Kony Fabric app when the backend app is complete. Using thesemock services, both the front-end

app and the backend app can be under development at the same time.

© 2019 by Kony, Inc. All rights reserved 17 of 92

http://community.kony.com/documentation/integrate-data

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

KonyReference Architecture also provides you with object Model extensions that you can put custom

code into to enable your app to do data validation or process the data before it is displayed or saved.

Kony Visualizer generates the object Model extension for you and includes them in your Kony

Visualizer project.

Models are stored as a shared resource in your Kony Visualizer project.

2.3.4 Views and Controllers

Forms under KonyReference Architecture work very similarly to the way theywork in a free form

JavaScript app built with Kony Visualizer. For example, whether you're building a KonyReference

Architecture app or a free form JavaScript app, you can drag and drop forms, widgets, and so forth

onto any form using theWYSIWYGeditor in Kony Visualizer. You can use forms acrossmultiple

channels. That is, you can use the same form for Android phones, iOS phones, and so on, Or, if you

prefer, you can use specific forms for specific channels.

Themain difference between forms in KonyReference Architecture and forms in a free form

JavaScript application is that forms in KonyReference Architecture have Controllers associated with

them. Kony Visualizer automatically generates formControllers for each form you add to your UI.

When you add actions to forms in KonyReference Architecture , Kony Visualizer automatically

generates action Controllers for them.

Views are only available fromwithin the form's Controller. So only the form's Controller can update the

form's data. Your app uses the kony.mvc.Navigation function to create a Navigation object. It can then

call theNavigation object's navigate function tomove from form to form. Because access to a

form only happens through the form's Controller, your app cannot call a form's show or destroy

methods. Only a form's Controller can display the form on the screen. And if your app needs to destroy

a form it calls kony.application.destroyForm, which destroys the form, its Controller, all widgets it

contains, and its children.

© 2019 by Kony, Inc. All rights reserved 18 of 92

http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#working_with_Action_Editor.htm?TocPath=Designing%2520an%2520Application|Add%2520Actions|_____0
http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm#FlexForm_Methods.htm%23show?TocPath=Reference|FlexForm%2520Widget|Methods|_____27
http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm#FlexForm_Methods.htm%23destroy?TocPath=Reference|FlexForm%2520Widget|Methods|_____5
http://docs.kony.com/konylibrary/visualizer/viz_api_dev_guide/Default.htm#kony.application_functions.htm?TocPath=References|kony.application%2520Namespace|Functions|_____0

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Add Actions

Kony Visualizer enables you to add actions to your app's widgets. In fact, this is the way to add actions

to your app's formControllers. When you add actions to a widget, thethis keyword inside the

widget's callbacks refers to the formController. To add a function in a Controller as the event callback

handler for a widget's event, your app uses code similar to the following.

btntest.onClick = Controller.AS_Button_OnClickEvent;

In the code snippet shown here, btntest is the name of aButton widget. This snippet sets the

Button widget.'sonClick event. The event callback handler is theAS_Button_

OnClickEvent function, which is amember of theController object. TheController

object is an object that Kony Visualizer generates for your form. TheAS_Button_

OnClickEvent function is written by you.

The following code sample demonstrates how an applicationmight add an event callback handler to a

button.

define('frmLogin', function ()

{

return function (Controller)

{

function addWidgetsfrmLogin()

{

this.setDefaultUnit(kony.flex.DP);

var btnSetIPAddress = new kony.ui.Button(

{

"height": "55dp",

"id": "btnSetIPAddress",

"onClick": Controller.AS_Button_

6c7c9d022bcc4a61a603aa3c89110efe,

"skin": "buttonOnfrmLoginSkin",

"text": "Set IPAddress",

© 2019 by Kony, Inc. All rights reserved 19 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

"width": "25%",

"zIndex": 1

},

{

"contentAlignment": constants.CONTENT_ALIGN_CENTER,

"displayText": true,

"padding": [0, 0, 0, 0],

"paddingInPixel": false

},

{});

this.add(btnSetIPAddress);

};

return [

{"addWidgets": addWidgetsfrmLogin, "id": "frmLogin",

"layoutType": kony.flex.FLOW_VERTICAL},

{"displayOrientation": constants.FORM_DISPLAY_

ORIENTATION_PORTRAIT,},

{"retainScrollPosition": false, "titleBar": false}]

};

});

The example above adds aButton widget calledbtnSetIPAddress to a form called

frmLogin, which is a form that is used to display a login screen. For the onClick event, the example

sets a function calledAS_Button_6c7c9d022bcc4a61a603aa3c89110efe as the event

callback handler.

Share Controllers Between Forms

Typically, each form has its own FormController. However, you can assign a Controller to multiple

forms if you choose to do so. If the forms that share the Controller are specific to a particular channel,

such as iOS, Kony Visualizer automatically stores the shared FormController in a folder under that

specific channel.

© 2019 by Kony, Inc. All rights reserved 20 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

It is also possible for forms that are used across channels to share a single FormController. Let us

suppose that your app has a set of three forms that are used on both the iPhone and Android phones.

Furthermore, consider that all three of those forms share the sameController. In such a scenario, the

shared FormController can be found in a folder outside of the iOS and Android channels that is

specifically for shared Controllers.

Note: It is not possible to share the ControllerActions JavaScript file betweenmultiple forms.

While developing your app, you can specialize existing forms for particular channels. This process is

called forking the form because Kony Visualizer actually creates a new version of the form for the

specific channel. If you fork the form, it automatically forks its Controller. Forked forms cannot be

shared.

To share a Controller between forms, follow these steps:

1. In your KonyReference Architecture project, click the formwith which you want to share a

Controller. Here, frmIncidentDetails is the selected form in the ResponsiveWeb channel.

2. Go to the Properties panel > Look tab.

© 2019 by Kony, Inc. All rights reserved 21 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#CreateKRAProject.htm

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

3. For the Controller field and beside the FormController name, click the EllipsisMenu icon .

Here, frmIncidentDetailsController is the FormController of the frmIncidentDetails form. The

Switch Controller window appears, with the list of available Controllers in different channels

and frmIncidentDetailsController in the Desktop (ResponsiveWeb) channel selected by

default.

4. Click the Controller that you want to share with the form. Here, we have selected

frmIncidentDetailsController of the frmIncidentDetails Mobile form.

© 2019 by Kony, Inc. All rights reserved 22 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

5. Click Apply. The frmIncidentDetailsController of the frmIncidentDetails Mobile form is shared

with the frmIncidentDetails ResponsiveWeb form. A new folder called Shared Controllers is

also created in the Project Explorer, with frmIncidentDetailsController placed under it. When

you write any code in the frmIncidentDetailsController JavaScript file, the code is shared with

all the forms that this Controller is shared with.

© 2019 by Kony, Inc. All rights reserved 23 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

2.3.5 Models and Controllers

Models encapsulate data storage locations and provide a standardized interface for creating data on

those data storage locations, reading it into the app, updating it, and deleting it. The data storage

locations can be on the user's device or remotely connected across a local network or the Internet.

Wherever the data resides, the app usesModels as a standard way of accessing it.

In KonyReference Architecture , Controllers contain the app's business logic. Therefore, an app's

Controllers useModels to perform operations on data storage locations, which are often referred to as

data sources.

2.4 Kony Reference Architecture Features

KonyReference Architecture supports the use of Kony forms and widgets. You can use these

elements to build your app's user interface just as you normally do when developing appswith Kony

Visualizer. Under KonyReference Architecture, you cannot use deprecated box-style widgets such as

popups, VerticalBox forms, HorizontalBox forms, and box-based templates. Youmust build your app

with FlexForm-based widgets.

To enable themodularization of your app's JavaScript source code, KonyReference Architecture

mandates the use of RequireJS and the AsynchronousModule Definition (AMD) API for loading

JavaScript files andmodules. Therefore, any codemodules you add to your appmust follow the

RequireJS and AMD conventions.

This section contains the following topics:

l Models, Views, and Controllers in Action

l Components and KonyReference Architecture

l FormNavigation

l DynamicModule Loading

l Define Namespaces in Apps

© 2019 by Kony, Inc. All rights reserved 24 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

l Access Kony Fabric Services through KonyReference Architecture

l Use KonyReference Architecture for KonyWearables App

2.4.1 Models, Views, and Controllers in Action

Models, Views, and Controllers work together to provide an app's functionality. The following diagram

illustrates how Controllers interact with Views andModels.

The Controller responds to user actions that it receives from its associated View. As stated previously,

each Controller is associated with exactly one View. However, Controllersmay communicate with any

number of Models.

All Controllers have amember variable namedView that contains the View for that specific

Controller. Views are only accessible fromwithin their corresponding Controllers by using the

statement this.View.

Each form, template, or master in an app has an associated Controller and only the individual

Controllers can directly access their own Views. However, when needed, Controllers can invoke their

parent Controller'smethods by calling theexecuteOnParent function. This provides both a clean

separation of the layers in the hierarchy of Views and a solid encapsulation of each View's

functionality.

© 2019 by Kony, Inc. All rights reserved 25 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Important: It is possible to define amaster without a contract. The complete View hierarchy

of amaster without a Controller is accessible from both its ownController and that of its

parents. For more information, seeMasters.

Controllers can also retrieve information fromModels, display it in Views, and enable the user interact

with it. Based on the user's input, the Controller can send notifications to theModel, which saves the

changes onto the data source.

2.4.2 Components and Kony Reference Architecture

When you create a component in either a Free Form Java Script or in a KonyReference Architecture

project, Kony Visualizer automatically creates one Controller.js and one ControllerActions.js file.

Consequently, any component that is created contains KonyReference Architecturemodules by

default.

For more information about components, refer the Creating ApplicationsWith Components section in

the Kony Visualizer User Guide.

2.4.3 Form Navigation

KonyReference Architecture dynamically loads forms at runtime.When a KonyReference

Architecture app creates a form, it also assigns the form a "friendly" name that ismore readable to

humans than the form's ID. A form's friendly namemust be unique and it shouldmake sense to the

programer or programmersmaintaining the app's source code.

Note: Your app can also assign friendly names to templates. But templates are not involved in

navigation.

KonyReference Architecturemaps the friendly names to the forms in your app. To navigate between

forms, an appmust create a Navigation object by calling the kony.mvc.Navigation function. When

invoking thekony.mvc.Navigation function, your app passes it the friendly name of the target

form. Once theNavigation object is created, the Controller for the currently-displayed form can

© 2019 by Kony, Inc. All rights reserved 26 of 92

https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#C_DesigningWorkingWithComponents.htm
https://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

switch to the target form by calling theNavigation object's navigatemethod . This activates the

Controller for the destination form.When the Controller for the destination form is active, it can then

display its View, get data from one or moreModels, and so forth. The following code sample illustrates

how this is done.

var params = {“title” : “My Title”, “description” : “My

description”};

var x = new kony.mvc.Navigation(“FormFriendlyName”);

x.navigate(params);

The example code here navigates to a new formwhose friendly name isFormFriendlyName. In

the call to theNavigation object'snavigatemethod, it passes parameters from the current

formController to the destination formController through theparams argument. Theparams

argument is a JavaScript object that is passed to the Controller of the target form. It can contain a small

amount of context information for the target form's Controller.

Calling theNavigation object'snavigatemethod creates the target form and its Controller,

and then activates the target form's Controller. Your app does not need to call the form's destroy

method on the form being navigated away from. In fact, under KonyReference Architecture , it can't

invoke thedestroymethod for any form. Instead, your app calls the kony.application.destroyForm

method to dispose of forms, their Controllers, and all of their child widgets.

Your app also cannot call theshowmethod on any form and does not need to. Under Kony

Reference Architecture , the form is the implementation of the View. It can only be directly accessed by

the form's Controller through the Controller'sView property. Therefore, the Controller can get

access to its View with thethis.View statement.

Customize Form Navigation

Your app can customize the navigation process by implementing callback handler functions for the

target form's Controller events. These events are triggered during navigation and before the target

form is visible. Providing callback handler functions for them enables you to customize what happens

when a form is navigated to.

© 2019 by Kony, Inc. All rights reserved 27 of 92

http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm#FlexForm_Methods.htm%23destroy?TocPath=Reference|FlexForm%2520Widget|Methods|_____5
http://docs.kony.com/konylibrary/visualizer/viz_api_dev_guide/Default.htm#kony.application_functions.htm%23destroyForm?TocPath=References|kony.application%2520Namespace|Functions|_____7

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

For example, if you want to customize the context information the target form receives, you can

provide a callback handler function for the onNavigate Event. This is shown in the sample below,

onNavigate : function(context, isBackNavigation)

{

this.context = context;

}

Note: The object that is sent as part of the onNavigate Event is accessible for all form lifecycle

events.

The context that is passed with the onNavigate Event of the kony.mvc.Navigation Object is available in

the navigationContext key of FormController instance.

The following code snippets demonstrate how to access the context from the lifecycle events of forms:

1. Navigate from source form to destination form.

var nav = new kony.mvc.Navigation("DestinationForm");

nav.navigate({"key1":"value1"});

2. Link preShow, postShow, and onMapping Events of the destination formwith the appropriate

events function defined here.

function preShow()

{

kony.print(this.navigationContext);

}

function onMapping()

{

kony.print(this.navigationContext);

}

function postShow()

{

kony.print(this.navigationContext);

© 2019 by Kony, Inc. All rights reserved 28 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

}

//Here, this.navigationContext contains the context that was passed

in navigate Method during the navigation from the source form to

the destination form.

3. In theonNavigatemethod, your appmay need to pause the navigation so that it can load

data, or do whatever else it needs to do, by invoking the pauseNavigation and

resumeNavigationmethods.

4. Youmay also want to specify a customModel for the target form. To do so, provide callback

handler functions for the getModel and setModel functions, as illustrated in the following sample

code.

getModel : function()

{

this.Model = new CustomFormModel();

return this.Model;

}

setModel : function(newModel)

{

this.Model = newModel;

}

Control Flow of navigate Function

The exact control flow for thenavigate function is as follows:

1. Get the Controller if it exists already. If not, create it.

2. Update theModel with theNavigation object'sModel.

3. If it is defined, invoke the target Controller'sonNavigate callback handler function.

4. The target Controller shows the form.

© 2019 by Kony, Inc. All rights reserved 29 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

2.4.4 Dynamic Module Loading

KonyReference Architecture apps can define distinct modules that contain discreet functionality and

load them dynamically on demand. In fact, KonyReference Architecture does this with its own code

modules. For instance, under older programmingModels, apps loaded all of their JavaScript modules

at startup. However, KonyReference Architecture loads them on demand. This both savesmemory

and decreases startup time.

Using Kony Visualizer, you can create your JavaScript modules consisting of a form and a form

Controller The file containing the form has the name:

<formID>.js

where<formID> is the unique ID of the form your app is loading. Similarly, the formController is

contained in a file called:

<formID>Controller.js

where<formID> is the unique ID of the form your app is loading.

These two files follow the format defined by the RequireJS standard. In addition, KonyReference

Architecture adds amethod calledaddWidgets to the form. Thismethod has the following

signature.

addWidgets(formref);

whereformref is a reference to the widget to add.

KonyReference Architecture uses an AMD stack for loading JavaScript modules, so the functionality

in your modulesmust use the AMD conventions.

When loading amodule, your appmust follow the standard RequireJS notation. So when your app

specifies the file name it must not include an extension suffix. This is illustrated in the following sample

code.

ControllerConfig = require(“accountModule”);

© 2019 by Kony, Inc. All rights reserved 30 of 92

http://requirejs.org/

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

As the example shows, an app can load a file calledaccountModule.js by invoking the

require function and passing it the name of the file without the.js extension. The file namemust

match the name given indefine notation in your app. All of the define notation uses that are

mentioned in the RequireJS documentation are supported in KonyReference Architecture except for

require.config. Paths are always relative to the root JavaScript folder.

KonyReference Architecture also supportsmodule dependencies. So if your app loads amodule that

is dependent on another module, it is loaded aswell.

2.4.5 Define Namespaces in Apps

In addition, KonyReference Architecture lets you define namspaces in your apps for themasters that

you create. Each fragment inside the namspace's name is a folder name. For example, suppose you

create the namespacemycompany.ui in your app. Further imagine that themycompany.ui namespace

contains a file calledChartControll.js. The path to the file would then be

mycompany\ui\ChartControl.js. The name for this file in RequireJS notation would be

"mycompany/ui/chartcontrol". To load this file, your app would need code similar to the

following example.

require(

[“mycompany/ui/chartcontrol”],

function(retValue)

{

//use retValue

});

Important: You can only define namespaces for your masters, not for forms.

If your app needs to load amodule in the context of a worker thread, it can do so by adding the worker

thread before the file name, as shown in the following code.

ControllerConfig = require(“workerthread\accountModule2”);

© 2019 by Kony, Inc. All rights reserved 31 of 92

http://requirejs.org/docs/api.html#define

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

2.4.6 Access Kony Fabric Services through Kony Reference Architecture

In addition tomodularizing and encapsulating an app's internal components for increased re-use, the

KonyReference Architecture SDK alsomodularizes and encapsulates the app's access to backend

services. In particular, the KonyReference Architecture SDK interfaces directly to Kony Fabric

services to a seamless, end-to-end development environment for your apps.

The easiest way access backend data sources is to interface your front-end client app with a backend

Kony Fabric app. In this way, you can easily access a wide range of backend data source through the

uniform and standardized interface that Kony Fabric provides. Backend data sources are accessed

through object services. Object services, in turn, are represented in your app by object Models, which

are often just calledModels. So the KonyReference Architecture SDK uses object Models to provide

front-end client appswith a uniformway to exchange data with backend data sources. In fact, the

KonyReference Architecture SDK generates object Models for you that provide you with code to

create, read, update, and delete records in backend data sources.

Using Kony Kony Fabric, your KonyReference Architecture SDK app can quickly sendmultiple

requests to backend services that can then be executed concurrently. For example, if you were writing

a banking app, your app can use the KonyReference Architecture SDK and Kony Fabric to rapidly

send requests for account information and customer personal information and also request map

information from a commercial map server, such asMapquest. All of these requests are executed on

their respective concurrently because the successive requests are sent out before any of them return

information.When they do respond, the information appears to come back to your app "automatically"

because the KonyReference Architecture SDK and Kony Fabric handlemost of the work.

Of course, you can add custom logic to your app to do whatever data processing is necessary. For

instance, in the preceding banking app, your app can request amap of the area in which the user is

standing. It can also send out a request to the bank's corporate servers asking where the branch

offices are in that locality. When the two pieces of information come back to the user's device, the app

can use custom logic that you write to combine the branch office locationswith themap so that the

user can see where the nearest branches are.

© 2019 by Kony, Inc. All rights reserved 32 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

When you develop an app, you build your object services in Kony Fabric to provide your front-end

client app with access to backend data sources. You then use Kony Visualizer to create your front-end

client app.With the KonyReference Architecture SDK and Kony Fabric, you can provide end-to-end

solutions for your customers and at the same time focus on the specific logic for the task at hand rather

than user interface tasks, backend connection tasks, and so forth. The KonyReference Architecture

SDK and Kony Fabric provide you with a powerful toolset that enables you to automatemost of the job

of app production.

The KonyMicroservices Framework Server Tools provide server-side objects that connect with one or

more Kony Fabric services. These services can range from Identity services toMessaging and Sync

services. You can also interface your app with SAP, SOAP, REST, and RDBMS services through

Kony Fabric. With this development Model. you have full access to the Kony backend services that any

other app built on Kony technologieswould have. Andmost of the objects, for both the client and the

server sides of the app, can be generated automatically so you don't have to code them yourself.

2.4.7 Use Kony Reference Architecture for Kony Wearables Apps

It is important to note that you can create a KonyWearables app under KonyReference Architecture .

For example, KonyWearables enables you to develop apps for the AppleWatch.When you create an

AppleWatch app, you can use Kony Visualizer to create the app's forms. However, Kony Visualizer

does not create Controllers for the forms in an AppleWatch app because the AppleWatch app has its

own specific architecture.

In addition, you can add Apple App Extensions to your KonyReference Architecture project so that it

can use Apple App Extensions on iOS andOS X. Kony Visualizer does not generate any Kony

Reference Architecture for Apple App Extensions. So adding App Extensions does not result, for

example, in additional Controllers in your project.

2.5 Create an App with Kony Reference Architecture

When you create an app with KonyReference Architecture, you can start by building the app's data

model in Kony Fabric Console. You can add various back-end services and operations that your front-

end client app requires. You can then build your front-end client app with Kony Visualizer. Kony

Visualizer provides you with a way to interface your front-end client app with your back-end Kony

Fabric app, as described on Kony Visualizer User Guide and in Kony Fabric User Guide.

© 2019 by Kony, Inc. All rights reserved 33 of 92

http://docs.kony.com/konylibrary/visualizer/viz_wearables_dev_guide/Default.htm
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm
http://docs.kony.com/konylibrary/konyfabric/kony_mobilefabric_user_guide/Default.htm

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

2.5.1 Build Your Front-End Client App

After you have created your Object services by using Kony Fabric, you can build your front-end client

app with Kony Visualizer.

Using the Kony Fabric channel in the Kony Visualizer Enterprise Edition Project pane, you can

connect your front-end client app to your back-end Kony Fabric app and the services it offers, and then

generate the object model. The Kony Fabric node is not available on Kony Visualizer Starter Edition.

You can select the channels for which you want to build your app, such asDesktop, Mobile, Android

Wear, or Tablet. The Reference Architecture Extensions feature is not available for the AppleWatch

channel. You can then design the user interface of your app by using variouswidgets available on

Kony Visualizer. For more information on channels, widgets, and API functions that are available on

Kony Visualizer, refer Kony Visualizer User Guide, Kony Visualizer Widget Programmer's Guide, and

Kony Visualizer API Programmer's Guide.

Create a Kony Reference Architecture Project

Youmust follow these steps to create a KonyReference Architecture project on Kony Visualizer:

1. On Kony Visualizer, click File, and then click New Project. Kony Visualizer displays the New

Project dialog boxwith the types of apps that you can create.

2. Select the Create Custom App option, and click Choose. Kony Visualizer again displays the

New Project dialog boxwith the available project types

3. Select the Kony Reference Architecture project type.

4. Type the name of your project in the Project Name field. Youmust follow these guidelineswhile

specifying the name of your project:

l The namemust always start with an alphabet.

l The name should contain only alphabets and digits.

© 2019 by Kony, Inc. All rights reserved 34 of 92

http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm
http://docs.kony.com/konylibrary/visualizer/viz_widget_prog_guide/Default.htm
http://docs.kony.com/konylibrary/visualizer/viz_api_dev_guide/Default.htm

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

l Special characters and reserved words are not allowed.

l The namemust contain more than three characters.

5. Click Create. Kony Visualizer creates the project.

Build the App's User Interface

Your client app's user interface displays one or more screens, also called views. Views can be forms,

templates, or masters. Every view must have at least one of these. More typically, a view requires

multiple forms, templates, or masters. The process of creating views is described in the Kony

Visualizer User Guide.

After creating at least one screen for your app using forms, you can add widgets to the forms.Widgets

provide your app with the user interface elements that it needs. These include buttons, menus, text

labels, calendars, andmore. They also give your app access to the functionality of the user's device

through the use of a camera widget, a phone, widget, and so forth. The process of populating your

app's formswith widgets is presented in the Kony Visualizer User Guide.

Add Functionality to Your App

Each time you add forms to your app, Kony Visualizer automatically adds a controller for each form

and creates a folder in your project to put it in. You'll find the controllers for your forms in the project

tree under the channel that you're developing the app for. So if you add a form called frmMain to your

project and you're developing the app for Android and iOS, you'll find folders for the frmMainController

in the Android and iOS branches of the project tree. Whenever you change the names of your forms

and templates, Kony Visualizer automatically renames the controllers associated with them.

Likewise, when you add templates to your apps, Kony Visualizer adds the corresponding controller for

each template. Renaming your template automatically renames its controller.

To add functionality to your app, you add your custom JavaScript code to the controllers in your app.

The controller for a form or template is the only object that has access to the form or template. Only the

controller can performs actions on it.

© 2019 by Kony, Inc. All rights reserved 35 of 92

http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#Adding_Forms_to_a_New_Application.htm?TocPath=Designing%2520an%2520Application|Create%2520Screens|_____0
http://docs.kony.com/konylibrary/visualizer/visualizer_user_guide/Default.htm#PopulatingWidgets.htm?TocPath=Designing%2520an%2520Application|Populate%2520Screens%2520with%2520Widgets|_____0

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Your appmay also containmodels, one for each backend data source. The data sources can be local

on the device or remote servers that are accessed across the network. If you need to, you can add

custom code to your app'smodels to enhance or customize themodel's functionality.

In addition, you can add actions to your forms just as you would with any other Kony Visualizer app.

When you do, Kony Visualizer automatically creates an action controller for your actions. However,

this is an autogenerated file and you should not make any changes to it. If you do, theywill be

overwritten the next time the file is regenerated.

2.5.2 Build Your App's Data Model

The steps required to build the datamodel of your app are as follows:

l Build a Kony Fabric app

l Configure Identity Services

l Create anObject Service

l Configure the DataModel

Build a Kony Fabric App

To integrate your front-end client app with the back-end services that you want the app to access

through Kony Fabric, youmust first create a Kony Fabric app by using Kony Fabric Console. For more

details on how to do so, refer Kony Fabric documentation.

In this walkthrough, we will create a simple service that integrateswith SAP data in the back end.

Although your datamay reside in a different backend storage system, the basic workflow for building

your app's datamodel will be very similar to what's shown here. In this walkthrough, we will assume

that you have already created your Kony Fabric app.

For our example, the Kony Fabric app is calledWorkOrder. TheWorkOrder Kony Fabric app gets its

data fromSAP. In the Kony Fabric console, the results will resemble the following illustration.

© 2019 by Kony, Inc. All rights reserved 36 of 92

http://docs.kony.com/konylibrary/konyfabric/kony_mobilefabric_user_guide/Default.htm#homepage.htm?TocPath=_____1

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Configure Identity Services

1. Select the app you just created. In this example, it's theWorkOrder app.

2. Click the Configure Services tab.

3. Choose Identity Services.

4. Click the Configure New button.

5. Set the identity's name.

6. Select the Type of Identity. In this example, it will be Kony SAP Gateway.

7. Set the address and port of the gateway server.

© 2019 by Kony, Inc. All rights reserved 37 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

8. Supply the remaining information such as the login credentials and so forth. You screen will

resemble the following.

Create an Object Service

Next, you create an object service that will provide your front-end client app with access to the data in

the data store. In this example, the client app on the device or desktop will access the work order data

in the SAP database.

1. In the Configure Services tab in the Kony Fabric console, clickObjects.

2. Select the Configure New button.

3. Set the name and endpoint type. In this example, the endpoint type is SAP.

4. Select Existing Identity Provider and enter the name of the identity service you create in Step

2. This example uses the name identitysap.

© 2019 by Kony, Inc. All rights reserved 38 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

5. Fill in the other information such asUser ID, Password, and so forth.

6. Click the Save & Configure button.

Configure the Data Model

At this point, you need to configure the datamodel your service will use.

1. Continuing from #6 in Step 3, click the Generate button.

2. In dialog box that appears, select the object service you want to use. The Kony Fabric console

then displays a list of objects offered by the selected object service.

© 2019 by Kony, Inc. All rights reserved 39 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

3. Choose the object or objects that you want your client app to have access to. In this example,

we will select only one object, as shown in the following figure.

4. Click Next.

5. In the dialog box that appears, clickGenerate. Your datamodel is now generated automatically

by the system.

6. Click the Publish button to publish your Kony Fabric data service app.

2.5.3 Import Kony Quantum Visualizer Apps into Kony Visualizer Enterprise

If you create your app on Kony Visualizer Starter Edition and you decide to import it into Kony

Visualizer Enterprise Edition so that you can integrate your app with Kony Fabric backend services,

you will need to generate ObjectModel andObjectModelExtension classes for your app. To do so, use

the following steps.

© 2019 by Kony, Inc. All rights reserved 40 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

1. From the Kony Visualizer mainmenu, choose File and then Import.

2. In the Import Kony Application dialog box, ensure that Select project root is selected.

3. Click the Browse button, navigate to your Kony Visualizer Starter Edition project, select it, and

clickOK.

4. After the Kony Visualizer Starter Edition project loads, point your mouse cursor at the Kony

Fabric channel in the Kony Visualizer Enterprise Edition Project pane.

5. Click the down arrow that appears and chooseGenerate Object Model from the context menu.

6. If prompted to do so, specify the name of your Kony Fabric app, aswell as the object services

you want to use in your front-end Kony Visualizer app.

2.5.4 A Sample FormController

The following sample code shows the partial implementation of aFormController object. Note

that the implementation is in RequireJS format, which ismandatory for KonyReference Architecture

applications.

define(

{

onIPRecievedFromIPControl: function (masterController1, newtext)

{

if (null != newtext)

{

alert(newtext);

}

},

AS_Button_6c7c9d022bcc4a61a603aa3c89110efe: function

(eventobject)

{

this.view.defaultAnimationEnabled = false;

© 2019 by Kony, Inc. All rights reserved 41 of 92

2. Overviews Kony Reference Architecture SDK API Programmer's Guide
Version1.4

this.view.master1.onIPAddressSet =

this.onIPRecievedFromIPControl;

this.view.master1.IPAddress = "212.212.100.110";

}

});

Note: In anMVC project, a top-level FlexContainer is added by default when you create a new

template.

© 2019 by Kony, Inc. All rights reserved 42 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

3. References

This section provides detailed documentation about the objects and other API elements that the Kony

Reference Architecture SDK provides.

Model Controller Other

kony.model Namespace FormController Object kony.mvc Namespace

TemplateController Object kony.mvc.registry Namespace

Navigation Object

Note that there are no View objects provided in the SDK because, under the KonyReference

Architecture, forms, templates, andmasters function as views. You create forms, templates, and

masters in Kony Visualizer.

When you're building your KonyReference Architecture app in Kony Visualizer, Kony Visualizer

generates some of your app's objects for you and creates files to store them in. Kony Visualizer uses a

default naming scheme for the objects and files it generates. The default naming scheme is important

to keep inmind when you're using the References section of this SDK's documentation. For instance,

the References section contains documentation for the following objects.

l FormControllerObject

l TemplateController Object

You will not actually find objects with these names in your code. Instead, under the default naming

scheme, you will find names based on the form names you use in Kony Visualizer. That is, if you create

a form in Kony Visualizer and name it frmLogin, then the FormController object for that form is

calledfrmLoginController and it is stored in a file namedfrmLoginController.js.

Likewise, if you have a form calledfrmMain, then that formwill have a FormController object called

frmMainController that's stored in a file calledfrmMainController.js. All of your

other FormController objects, FormControllerExtension objects, and so on, are similarly named.

© 2019 by Kony, Inc. All rights reserved 43 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

There are some objects whose name is exactly what you see in the References section. These are as

follows.

l Navigation Object

l TemplateController Object

Your code accesses these objects using the exact names you see here.

3.1 FormController Object

The code for the FormController object is created by the code generation tool for you. It communicates

with both themodels for the data sources and the viewmodels for the forms.

You should not modify the source code for the FormController object. Instead, your app calls the

methods that the FormController object provides. However, most appswill need custom business

logic. You add that to the FormControllerExtension object rather than the FormController object itself.

The FormController object offers the following.

Methods

getCurrentFormMethod

getCurrentFormFriendlyNameMethod

getPreviousFormMethod

getPreviousFormFriendlyNameMethod

Properties

view

Note: If you change the default template of the controller for dependency injection, themethods

from the controller will not be displayed as part of intellisense to invoke functions in the Action

Editor.

© 2019 by Kony, Inc. All rights reserved 44 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

3.1.1 FormController Events

TheFormController object provides the following events.

Note: While using thethis keyword (for example, this.view) in a FormController event in

order to point to the current controller, youmust ensure that the function is not a fat arrow function.

Because in fat arrow types of function declarations, thethis keyword is taken from the parent

scope andmight not point to the current FormController. For more information on this limitation,

click here.

getModel Event

Invoked when the Navigation object retrieves themodel for the current FormController object.

Syntax

getModel();

Parameters

None.

Return Values

Returns themodel object that is required for the form.

Remarks

Your app does not directly access theFormController object for a form. If your app needs the

model associated with theFormController object, it can access themodel by retrieving it through

an instance of theNavigation object. This event handler retrieves themodel that you want it to use

for the form.

Example

getModel : function ()

{

© 2019 by Kony, Inc. All rights reserved 45 of 92

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

var model = new CustomFormModel();

return model;

}

onCreateView Event

Called when the controller is ready to create the view.

Syntax

onCreateView();

Parameters

None.

Return Values

Returns either the file name of the form to use as the view or an instance of the form.

Remarks

Use this method to dynamically select which view to use for the controller when your app has more than

one view for a controller. For more information, see Sharing Controllers Between Forms.

Example 1

onCreateView : function ()

{

return "ViewFileName.js");

}

Example 2

onCreateView : function ()

{

// Create an instance of the view to return or

// retrieve the instance from somewhere in your

© 2019 by Kony, Inc. All rights reserved 46 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

// code where you have stored it. In this example,

// it's saved in a variable called newInstance.

return (viewInstance);

}

onDestroy Event

Triggered just before a form is destroyed.

Syntax

onDestroy();

Parameters

None.

Return Values

None

Remarks

Use this event callback handler function to perform cleanup tasks when a form is about to be destroyed.

Example

onDestroy : function ()

{

this.context = null;

this.model = null;

}

onNavigate Event

This event is invoked when you navigate from one form to another. This is a Form Controller event and is

used only in Kony Reference Architecture-based projects.

© 2019 by Kony, Inc. All rights reserved 47 of 92

http://docs.kony.com/konylibrary/visualizer/kony_ref_arch_api/Default.htm#FormController_Events.htm%23onNavigate
http://docs.kony.com/konylibrary/visualizer/kony_ref_arch_api/Default.htm

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Syntax

onNavigate(

 context,

 isBackNavigation)

Parameters

context [Object]

A JavaScript object that contains the data that the destination form requires after navigation.

isBackNavigation [Boolean]

This parameter determines whether you have clicked the back button or not. It has the value as true

when you click the back button and false when you do not click the back button.

Read/Write

Read + Write

Remarks

To navigate from one form to another, youmust create a Navigation Object. This object navigates to the

destination form's controller. The form's controller in turn displays the view of the form.

This event is useful in the following scenarios:

l To prepare data that the destination form requires after the navigation.

l To pause the navigation if any asynchronous calls are in progress.

Note: The object that is sent as part of the onNavigate Event is accessible for all form lifecycle events.

Example

define({

© 2019 by Kony, Inc. All rights reserved 48 of 92

http://docs.kony.com/konylibrary/visualizer/kony_ref_arch_api/Default.htm#Navigation_Object.htm

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

onNavigate: function(context, isBackNavigation) {

this.context = context;

this.pauseNavigation();

kony.net.invokeServiceAsync(url, this.callback1);

},

callback1: function(result) {

this.resumeNavigation();

}

});

Platform Availability

Available on all platforms

setModel Event

Invoked while navigating to a new form themodel to set the form's updatedmodel object.

Syntax

setModel(

 model);

Parameters

model

Themodel object for the new form.

Return Values

None.

Remarks

Use this event callback handler to set amodel for the form being navigated to.

© 2019 by Kony, Inc. All rights reserved 49 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

setModel : function (model)

{

this.model = model;

}

3.1.2 FormController Methods

The FormController object contains the followingmethods.

getCurrentFormMethod

Retrieves the name of the current form.

Syntax

getCurrentForm();

Parameters

None.

Return Values

Returns a string containing the name of the current form.

Example

ver currentForm = this.getCurrentForm();

getCurrentFormFriendlyNameMethod

Retrieves the friendly name of the current form.

Syntax

getCurrentFormFriendlyName();

© 2019 by Kony, Inc. All rights reserved 50 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Parameters

None.

Return Values

Returns a string containing the friendly name of the current form.

Example

ver currentFormFriendlyName= this.getCurrentFormFriendlyName();

getPreviousFormMethod

Retrieves the name of the previous visible form.

Syntax

getPreviousForm();

Parameters

None.

Return Values

Returns a string containing the name of the previous visible form, ornull if there is no previous visible

form.

Example

ver previousForm = this.getPreviousForm();

getPreviousFormFriendlyNameMethod

Retrieves the friendly name of the previous visible form.

Syntax

getPreviousFormFriendlyName();

© 2019 by Kony, Inc. All rights reserved 51 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Parameters

None.

Return Values

Returns a string containing the friendly name of the previous visible form, ornull if there is no previous

visible form.

Example

ver previousFormFriendlyName = this.getPreviousFormFriendlyName();

pauseNavigationMethod

Pauses when navigating from one form to another.

Syntax

pauseNavigation();

Parameters

None.

Return Values

None.

Remarks

Your app calls this method to pause when navigating from form to form and wait for tasks that need to be

completed before the new form is shown. The only time your app can call this function is in the onNavigate

event callback handler function, which youmust provide. If your app calls it anywhere else, it does nothing.

To resume navigation, your appmust call the resumeNavigationmethod.

© 2019 by Kony, Inc. All rights reserved 52 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

onNavigate : function(context, isBackNavigation)

{

this.context = context;

this.pauseNavigation();

kony.net.invokeServiceAsync(url, this.callback1);

}

callback1: function(result)

{

this.resumeNavigation();

}

resumeNavigationMethod

Resumes the process of navigating from form to form.

Syntax

resumeNavigation();

Parameters

None.

Return Values

None.

Remarks

When your app is navigating from form to form, it can pause the process of navigation by calling the

pauseNavigationmethod. After navigation has been paused, your appmust call the

resumeNavigation method to continue the navigation process and display the target form. If

pauseNavigation has not been called, this method does nothing.

© 2019 by Kony, Inc. All rights reserved 53 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Important: Failing to call resumeNavigation after your app has called

pauseNavigation may result in your app locking up.

Example

onNavigate : function(context, isBackNavigation)

{

this.context = context;

this.pauseNavigation();

kony.net.invokeServiceAsync(url, this.callback1);

}

callback1: function(result)

{

this.resumeNavigation();

}

3.1.3 FormController Properties

The FormController object contains the following properties.

view Property

Contains a reference to the FormController object's view.

Syntax

view

Type

Object

Read / Write

Read-only

© 2019 by Kony, Inc. All rights reserved 54 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Remarks

Your app can access the view using the syntax this.view .

Example

var view = this.view;

3.2 kony.model Namespace

The kony.model namespace contains the following API elements.

Constants

kony.model.ExceptionCodeConstants

kony.model.ValidationType Constants

Objects

kony.model.Exception Object

Properties

code

message

name

kony.model.KonyApplicationContext Object

Methods

createModelMethod

loginMethod

logout Method

© 2019 by Kony, Inc. All rights reserved 55 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

save

getByPrimaryKey

update

partialUpdate

remove

removeByID

getAll

customVerb

getByCriteria

3.2.1 kony.model Constants

The kony.model namespace provides the following constants.

kony.model.ExceptionCodeConstants

Specifies the error code that occurred for the exception.

Constant Description

kony.model.ExceptionCode.CD_ERROR_CREATE An error occurred while performing the create

operation.

kony.model.ExceptionCode.CD_ERROR_

CUSTOMVERB

An error occurred while performing the operation

specified by a custom verb.

kony.model.ExceptionCode.CD_ERROR_DELETE An error occurred while performing the delete

operation.

© 2019 by Kony, Inc. All rights reserved 56 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Constant Description

kony.model.ExceptionCode.CD_ERROR_

DELETE_BY_PRIMARY_KEY

An error occurred while performing the delete by

primary key operation.

kony.model.ExceptionCode.CD_ERROR_FETCH An error occurred while performing the fetch

operation.

kony.model.ExceptionCode.CD_ERROR_

FETCHING_DATA_FOR_COLUMNS

An error occurred while fetching the data for the

specified columns.

kony.model.ExceptionCode.CD_ERROR_LOGIN_

FAILURE

An error occurred while trying to log in.

kony.model.ExceptionCode.CD_ERROR_UPDATE An error occurred while performing the update

operation.

kony.model.ExceptionCode.CD_ERROR_

VALIDATION_CREATE

An error occurred while performing the validation

create operation.

kony.model.ExceptionCode.CD_ERROR_

VALIDATION_UPDATE

An error occurred while performing the validation

update operation.

kony.model.ValidationType Constants

Specifies the type of validation to be performed.

Constant Description

kony.model.constants.ValidationType.CREATE The operation creates a record in the

backend data source.

kony.model.constants.ValidationType.UPDATE The operation updates a record in the

backend data source.

3.2.2 kony.model Objects

The kony.model provides the following objects.
kony.model.Exception Object

© 2019 by Kony, Inc. All rights reserved 57 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Properties

code

message

name

kony.model.KonyApplicationContext Object

Methods

createModelMethod

loginMethod

logout Method

kony.model.Exception Object

The kony.model.Exception object simplifies exception handling for your app.

Properties

code

message

name

kony.model.Exception Properties

The kony.model.Exception object provides the following properties.

code Property

Specifies the error code.

© 2019 by Kony, Inc. All rights reserved 58 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Syntax

code

Type

Number

Read / Write

Read only

Remarks

This property can only be set to one of the values in the kony.model.ExceptionCode constants.

message Property

Contains a description of the error message.

Syntax

message

Type

String

Read / Write

Read only

nameProperty

Contains the name of the exception

Syntax

name

Type

String

© 2019 by Kony, Inc. All rights reserved 59 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Read / Write

Read only

kony.model.KonyApplicationContext Object

The kony.model.KonyApplicationContext class contains the following.

Methods

createModelMethod

loginMethod

logout Method

kony.model.KonyApplicationContext Methods

The KonyApplicationContext provides the followingmethods.

kony.model.ApplicationContext.createModelMethod

Creates amodel using the specified inputs.

Syntax

kony.model.ApplicationContext.createModel(

 entityName,

 serviceName,

 options,

 metadataOptions,

 successCallback,

 errorCallback)

Parameters

entityName

A string that specifies the name of themodel.

© 2019 by Kony, Inc. All rights reserved 60 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

serviceName

A string that contains the name of the object service that themodel specified in the entityName

parameter belongs to.

options

A JavaScript object containing the access options for the service that the app is logging into. This

object contains one key, namedaccess. The values for this key can be either "online" or "offline".

metadataOptions

An object that contains parameters that the app passes to the Kony Reference Architecture framework

while fetching Kony Fabric metadata. The only parameter currently supported is "getFromServer"

which can be set totrue orfalse. A value of true forces themodel to fetch themetadata from

the server rather than retrieve it from the cache. A value of false allows themetadata to be fetched

from the cache. If "getFromServer" is set to true, then themetadata is refreshed and a new instance is

created.

successCallback

A JavaScript function, which you provide, that is automatically invoked when themodel object is

created. The signature of this function is as follows.

successCallback(modelObject);

ThemodelObject parameter to this callback function contains themodel object that was created.

errorCallback

A JavaScript function, which you provide, that is automatically invoked when themodel object is not

created. The signature of this function is as follows.

loginErrorCallback(error);

The error parameter to this callback function holds a kony.model.Exception object.

Return Values

Returns themodel object.

kony.model.ApplicationContext.login

© 2019 by Kony, Inc. All rights reserved 61 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Performs a login operation.

Syntax

kony.model.ApplicationContext.login(

 params,

 loginSucCallback,

 loginErrCallback)

Parameters

params

A JavaScript object that holds key-value pairs specifying the login authorization information. The keys

in this object are as follows.

Key Value

authParams A JavaScript object that holds the

authorization parameters for logging into

the service. For more details, see

Remarks below.

options A JavaScript object containing the

access options for the service that the

app is logging into. This object contains

one key, namedaccess. The values

for this key can be either "online" or

"offline".

identityServiceName A string that specifies the name of the

identity service that performs the

authentication.

loginSucCallback

© 2019 by Kony, Inc. All rights reserved 62 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

A JavaScript function, which you provide, that is automatically invoked when the login is successful.

The signature of this function is as follows.

loginSuccessCallback();

loginErrCallback

A JavaScript function, which you provide, that is automatically invoked when the login is not

successful. The signature of this function is as follows.

loginErrorCallback(err);

The err parameter to this callback function contains the error value and error message string for the

error that occurred.

Return Values

None.

Remarks

The params parameter contains key-value pairs that hold information needed to log into a server. The

authParams key in the params parameter is an object that also contains key-value pairs. The keys it

contains are given in the following table.

Key Value

userid A string containing

the User ID for the

account or service

that the app is logging

into.

password A string containing

the password for the

account or service

that the app is logging

into.

© 2019 by Kony, Inc. All rights reserved 63 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Theoptions key in the params object is a JavaScript object that specifies the type of access. The key

name for selecting the type of access is "access". A value of "online" indicates that the app is logging into a

remote service that is not on the device, but rather on the network. The value "offline" means that the

service is on the device.

Example

var params = {

"authParams" : {

"userid" : "MyUserID",

"password" : "MyPassword"

},

options :{"access" :"online"},

"identityServiceName" : "TheIdentityServiceName"

};

function loginSuccessCallback()

{

// Your code goes here.

}

function loginErrorCallback(err)

{

// Your code goes here.

}

kony.model.ApplicationContext.login

(params,loginSuccessCallback,loginErrorCallback);

kony.model.KonyApplicationContext.logout Method

Performs a logout operation.

© 2019 by Kony, Inc. All rights reserved 64 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Syntax

logout(

 successCallback,

 errorCallback);

Parameters

successCallback

A JavaScript function, which you provide, that is automatically invoked when the logout is successful.

The signature of this function is as follows.

loginSuccessCallback();

errorCallback

A JavaScript function, which you provide, that is automatically invoked when the logout is not

successful. The signature of this function is as follows.

loginErrorCallback(err);

The err parameter to this callback function contains the error value and error message string for the

error that occurred.

Return Values

None

Remarks

This function clears all form controllers, models, and so forth from the

KonyApplicationContext object's application context. It then logs the app out of Kony Fabric

services that it is logged into.

Example

var appContext = kony.model.KonyApplicationContext.getAppInstance();

appContext.logout();

© 2019 by Kony, Inc. All rights reserved 65 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

3.3 kony.mvc Namespace

Thekony.mvc namespace provides the following API elements.

l Konymvc namespace enables your app to create a Navigation object, which it uses to navigate

from form controller to form controller.

Functions

l Navigation

3.3.1 kony.mvc Functions

Thekony.mvc namespace contains the following function.

kony.mvc.Navigation Function

Creates an instance of the Navigation object.

Syntax

kony.mvc.Navigation(

 friendlyName);

Parameters

friendlyName

The friendly name of the form that the Navigation object is to be created for.

Return Values

Returns a Navigation object on success, ornull on failure.

Remarks

A form can havemultipleNavigation objects, so it is possible for an app to call this functionmultiple

times on a form.

© 2019 by Kony, Inc. All rights reserved 66 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

var Navigation = new kony.mvc.Navigation("FormFriendlyName");

3.4 kony.mvc.registry Namespace

Thekony.mvc.registry namespace provides the following API elements

Functions

add Function

getViewName Function

getControllerName Function

remove Function

3.4.1 kony.mvc.registry Functions

The kony.mvc.registry namespace contains the following functions.

kony.mvc.registry.add Function

Enables you to add a new form name, along with its controller, extension controller, and friendly name, to the

registry.

Syntax 1

kony.mvc.registry.add(“friendlyName”, “formId”);

kony.mvc.registry.add(“friendlyName”, “formId”, “formController”);

kony.mvc.registry.add(“friendlyName”, “formId”, {“controllerName” :

“formController” , “controllerType” : <controllerType>});

kony.mvc.registry.add(“friendlyName”, “formId”, “formController”,

“formExtController”);

© 2019 by Kony, Inc. All rights reserved 67 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Syntax 2

kony.mvc.registry.add("friendlyName", "formId", {"controllerName" : "",

"controllerExtName" : "", "controllerType" : ""});

Parameters

friendlyName [string] [Mandatory]

You can assign a "friendly" name to the form, which will be easier for you to remember than the actual

formId. The friendlyName stringmaps the navigation path to the formId and its corresponding

controller.

formId [string] [Mandatory]

The name of the form. Given formId as "f1," the Framework automatically searches for the availability

of " f1.js" and "f1Controller.js" for initializations.

The following parameters are considered in the third parameter if it is a dictionary (Refer Syntax 2 and

Example for more information):

formController [string] [Optional]

The name of the file that contains the form controller.

formExtController [string] [Optional]

The name of the file that contains the form extension controller. You can use form extension controllers

to extend the functionality of the form.

controllerExtName [string] [Optional]

The name of the file that contains the extension controller.

controllerType [string] [Optional]

For data-driven forms, this parameter is kony.mvc.ModelFormController. You can inherit your own

controller from kony.mvc.FormController and provide the name here.

Return Values

Returns true if the form name is successfully added to the registry, otherwise it returns false.

© 2019 by Kony, Inc. All rights reserved 68 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Returns false if the same friendly name has already been registered.

Remarks

l If the friendlyName or the formName parameter (or both) is an empty string, null, or undefined, this

function does nothing.

l If the formController parameter is null, undefined, not provided, or is an empty string, the string in the

formId parameter is suffixed with the string "Controller." For example, if formIdcontains the string "form1"

and the formController parameter is not provided, then "form1Controller" will used as the name of the

form controller file.

Example

kony.mvc.registry.add(

"friendlyName",

"formId",

{"controllerName" : "", "controllerExtName" : "", "controllerType" : ""});

kony.mvc.registry.getViewName

Retrieves the form or template name from the registered friendly name.

Syntax

kony.mvc.registry.getViewName(

 friendlyName);

Parameters

friendlyName

The friendly name of the form to retrieve the name from.

Return Values

Returns a string containing the form name if the friendly name is found in the registry, ornull if it is not

found.

© 2019 by Kony, Inc. All rights reserved 69 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

formName = kony.mvc.registry.getViewName("Form1");

kony.mvc.registry.getControllerName

Retrieves the controller name from the registered friendly name.

Syntax

kony.mvc.registry.getControllerName(

 friendlyName);

Parameters

friendlyName

The friendly name of the form to retrieve the name from.

Return Values

Returns a string containing the controller name if the friendly name is registered and the controller name is

found. Returns a string containing "<viewName>.Controller" if the friendly name is registered and the

controller name is not found. Returns null if the friendly name is not registered.

Example

kony.mvc.registry.getControllerName("FriendlyName");

kony.mvc.registry.remove

Removes the name of a form controller from the registry.

Syntax

kony.mvc.registry.remove(

 friendlyName);

© 2019 by Kony, Inc. All rights reserved 70 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Parameters

friendlyName

The friendly name of the form whose controller is to be removed.

Return Values

None.

Example

kony.mvc.registry.remove(FriendlyName");

3.5 Navigation Object

TheNavigation object provides your app with the ability to navigate from form to form. It does

this by navigating to a target form controller, which then displays the form's view. To create a

Navigation object, your appmust call the kony.mvc.Navigation function.

Methods

navigateMethod

3.5.1 Navigation Methods

TheNavigation object provides the followingmethods.

getModel

Retrieves themodel for the form.

Syntax

getModel();

Parameters

None.

© 2019 by Kony, Inc. All rights reserved 71 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Return Values

Returns a JavaScript object that contains themodel for the form. Themodel is either themodel that the app

previously set or themodel that is retrieved from theFormController. This method triggers the

FormController.getModel event.

Remarks

This method retrieves the form's model.

Example

var formModel = navObject.getModel();

navigateMethod

Performs a form navigation.

Syntax

navigate(

 params);

Parameters

params

A JavaScript object containing key/value pairs that are passed to the target form from the current form.

Return Values

None.

Remarks

The params parameter is passed to all of the lifecycle events, such as preShow, postShow, and init, on the

target form.

© 2019 by Kony, Inc. All rights reserved 72 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

var x = new kony.mvc.Navigation(“friendlyName/formName”, model);

x.navigate(params);

setModel

Sets themodel for the form being navigated to.

Syntax

setModel(

 newModel

Parameters

newModel

A JavaScript object that holds themodel for the target form.

Return Values

None.

Remarks

This method sets themodel of the target form, which is the form being navigated to. It triggers the

FormController.setModel event.

3.6 TemplateController Object

The code for the TemplateController object is created by the code generation tool for you. It

communicateswith both themodels for the data sources and the viewmodels for the forms.

You should not modify the source code for the TemplateController object. Instead, your app calls the

methods that the TemplateController object provides.

© 2019 by Kony, Inc. All rights reserved 73 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

When your app passes a template as a string to a widget, the widget creates the corresponding

TemplateController object when it needs the template's view. It automatically searches for a

TemplateController name that ismapped in the registry for that template. If it doesn't find amapping, it

searches for a template controller whose file name is of the form <templateName>Controller.js, where

<templateName> is the name of the template. It then creates the TemplateController object for that

template.

The TemplateController object offers the following.

Methods

executeOnParent Method

Properties

view Property

3.6.1 TemplateController Events

The TemplateController object supports the following events.

onCreateView Event

Called when the controller is ready to create the view.

Syntax

onCreateView();

Parameters

None.

Return Values

Returns either the file name of the template to use as the view or an instance of the template.

© 2019 by Kony, Inc. All rights reserved 74 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Remarks

Use this method to dynamically select which view to use for the controller when your app has more than

one view for a controller. For more information, see Sharing Controllers Between Forms.

Example 1

onCreateView : function ()

{

return "ViewFileName.js");

}

Example 2

onCreateView : function ()

{

// Create an instance of the view to return or

// retrieve the instance from somewhere in your

// code where you have stored it. In this example,

// it's saved in a variable called newInstance.

return (viewInstance);

}

onDestroy Event

Triggered just before a template is destroyed.

Syntax

onDestroy();

Parameters

None.

Return Values

None

© 2019 by Kony, Inc. All rights reserved 75 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Remarks

Use this event callback handler function to perform cleanup tasks when a template is about to be

destroyed.

Example

onDestroy : function ()

{

this.context = null;

this.model = null;

}

onViewCreated

Triggered when the view is created.

Syntax

onViewCreated();

Parameters

None.

Return Values

None.

Remarks

This method is automatically invoked just after the onCreateView event has finished and the template's

view has been created. Developers can use this method to configure the template.

Example

onViewCreated: function ()

{

this.view.addGestureRecognizer(

© 2019 by Kony, Inc. All rights reserved 76 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

constants.GESTURE_TYPE_SWIPE,

{fingers: 1},

function(widgetRef, gestureInfo, context)

{

alert("Swipe Gesture");

}

);

}

3.6.2 TemplateController Methods

The TemplateController object provides the followingmethod.

executeOnParent Method

Executes the specifiedmethod of the parent object.

Syntax

executeOnParent(

 methodName,

 methodParams);

Parameters

methodName

A string containing the name of the parent's method.

methodParams

An optional list of parameters to pass to themethod specified by themethodName parameter.

Return Values

None.

© 2019 by Kony, Inc. All rights reserved 77 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Remarks

The parent of this object is always a FormController object. This method should only be called from sub-

view controllers.

Example

this.executeOnParent(“func1”, “param1”, "param2");

getCurrentView Method

Retrieves the current view for the template controller.

Syntax

getCurrentView();

Parameters

None.

Return Values

Returns the template controller's view.

Example

var currentView = tmpController.getCurrentView();

3.6.3 TemplateController Properties

The TemplateController object contains the following property.

view Property

Contains a reference to the TemplateController object's view.

© 2019 by Kony, Inc. All rights reserved 78 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Syntax

view

Type

Object

Read / Write

Read-only

Remarks

Your app can access the view using the syntax this.view .

Example

var view = this.view;

3.7 Deprecated

The API elements in this section are deprecated and should not be used in the development of new

software. The documentation in this section is provided to help with themaintenance of legacy

software.

3.7.1 kony.sdk.mvvm Namespace

The kony.sdk.mvvm namespace is now deprecated. New software should not use anything in this

namespace. Instead, use the kony.model namespace.

Documentation on the kony.sdk.mvvm namespace is provided here to assist with maintaining legacy

software. The kony.sdk.mvvm namespace contains the following API elements.

Constants

l kony.sdk.mvvm.OperationType Constants

© 2019 by Kony, Inc. All rights reserved 79 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Objects

l kony.sdk.mvvm.KonyApplicationContext Object

l Methods

l appServicesLoginMethod

l dismissLoadingScreenMethod

l getAllFormControllersMethod

l getAppInstanceMethod

l getFactorySharedInstanceMethod

l getFormController Method

l getMetadataStoreMethod

l getModelMethod

l getObjectServiceMethod

l init Method

l logout Method

l showLoadingScreenMethod

kony.sdk.mvvm Constants

The kony.sdk.mvvm namespace provides the following constants.

kony.sdk.mvvm.OperationType Constants

Specifies the operation to be performed.

© 2019 by Kony, Inc. All rights reserved 80 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Constant Description

kony.sdk.mvvm.OperationType.ADD Add a datamodel object.

kony.sdk.mvvm.OperationType.FILTER_BY_PRIMARY_

KEY

The operation is filtered by the data object's

primary key.

kony.sdk.mvvm.OperationType.NO_FILTER The operation is not filtered.

Remarks

Use these constants to specify datamodel operations when performing form navigation. For more

information, see kony.sdk.mvvm.NavigationObject Object.

kony.sdk.mvvm Objects

The kony.sdk.mvvm provides the following objects.

Objects

l kony.sdk.mvvm.KonyApplicationContext Object

l Methods

l appServicesLoginMethod

l dismissLoadingScreenMethod

l getAllFormControllersMethod

l getAppInstanceMethod

l getFactorySharedInstanceMethod

l getFormController Method

l getMetadataStoreMethod

l getModelMethod

© 2019 by Kony, Inc. All rights reserved 81 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

l getObjectServiceMethod

l init Method

l logout Method

l showLoadingScreenMethod

kony.sdk.mvvm.KonyApplicationContext Object

The kony.sdk.mvvm.KonyApplicationContext class contains the following.

Methods

l appServicesLoginMethod

l dismissLoadingScreenMethod

l getAllFormControllersMethod

l getAppInstanceMethod

l getFactorySharedInstanceMethod

l getFormController Method

l getMetadataStoreMethod

l getModelMethod

l getObjectServiceMethod

l init Method

l logout Method

l showLoadingScreenMethod

© 2019 by Kony, Inc. All rights reserved 82 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

kony.sdk.mvvm.KonyApplicationContext Methods

The KonyApplicationContext provides the followingmethods.

kony.sdk.mvvm.KonyApplicationContext.appServicesLoginMethod

Performs initialization, registration, and login services for an app.

Syntax

kony.sdk.mvvm.KonyApplicationContext.appServicesLogin(

 params,

 loginSuccessCallback,

 loginErrorCallback);

Parameters

params

An object containing the authorization parameter and options, as well as the synchronization

configuration information. This object uses the following format.

l authParams: An object containing a userID and a password.

l options: An object specifying the type of access that the app uses. The object contains one

key, called "access", which can have a value of either "online" or "offline".

l syncOptions: An object containing synchronization configuration information.

loginSuccessCallback

An optional event handler function that is called upon success.

loginErrorCallback

An optional event handler function that is called if theappServicesLogin function fails.

Return Values

None.

© 2019 by Kony, Inc. All rights reserved 83 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Remarks

This method performs initialization, configuration, and login services. It calls the

kony.sdk.mvvm.KonyApplicationContext.init method. If your app invokes appServicesLogin, it

does not need to call kony.sdk.mvvm.KonyApplicationContext.init. The

appServicesLogin method also registers and starts the AuthenticationServiceManage and

MetadataServiceManager objects. Therefore, this appmust have identity services configured prior to

callingappServicesLogin.

In the case of an app that uses offline storage, this method also registers and starts theSyncManager

object.

Your app calls this method directly by using its fully-qualified name.

Example

params = {

"authParams" : {

"userid" : "Aard",

"password" : "Vark"

},

"options" :{

{"access":"online"}

},

"syncOptions" : {

"syncConfig":{

"batchsize" : 10000000,

// Other sync configuration params.

}

}

}

kony.sdk.mvvm.KonyApplicationContext.appServicesLogin(params);

kony.sdk.mvvm.KonyApplicationContext.dismissLoadingScreenMethod

Dismisses a loading screen that was previously displayed using the showLoadingScreenmethod.

© 2019 by Kony, Inc. All rights reserved 84 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Syntax

dismissLoadingScreen();

Parameters

None.

Return Values

None.

Remarks

Typically, your app calls the showLoadingScreenmethod to display a screen that lets the user know that it

is loading data and that the user must wait. After the data has been loaded, your app calls this method to

dismiss the loading screen.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

appContext.dismissLoadingScreen();

kony.sdk.mvvm.KonyApplicationContext.getAllFormControllersMethod

Retrieves controler objects for every form in the current application context.

Syntax

getAllFormControllers();

Parameters

None.

Return Values

Returns an object containing all of the form controllers in the application context. The object contains a

group of key-value pairs in which the form ID is the key and the value is the controller for the specified form.

© 2019 by Kony, Inc. All rights reserved 85 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

var allControllers = appContext.getFormControllers();

kony.sdk.mvvm.KonyApplicationContext.getAppInstanceMethod

Retrieves in instance of a KonyApplicationContext object.

Syntax

kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

Parameters

None.

Return Values

Returns a kony.sdk.mvvm.KonyApplicationContext object.

Remarks

Your app calls this function any time it needs an instance of the global KonyApplicationContext object.

Your app calls this method directly by using its fully-qualified name.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

kony.sdk.mvvm.KonyApplicationContext.getFactorySharedInstanceMethod

Retrieves an instance of the AppFactory object.

Syntax

getFactorySharedInstance();

© 2019 by Kony, Inc. All rights reserved 86 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Parameters

None.

Return Values

Returns a kony.sdk.mvvm.AppFactory object.

Remarks

Apps use the AppFactory object to instantiate instances of classes in the kony.sdk.mvvm namespace.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

var appFactoryInstance = appContext.getFactorySharedInstance();

kony.sdk.mvvm.KonyApplicationContext.getFormController Method

Retrieves the form controller for the specified form.

Syntax

getFormController(

 formId)

Parameters

formID

A string containing the ID of the form.

Return Values

Returns the controller associated with the specified form.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

appContext.getFormController(formId);

© 2019 by Kony, Inc. All rights reserved 87 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

kony.sdk.mvvm.KonyApplicationContext.getMetadataStoreMethod

Retrieves a kony.sdk.mvvm.MetadataStore object from the application's context.

Syntax

kony.sdk.mvvm.KonyApplicationContext.getAppInstance().getMetadataStore();

Parameters

None.

Return Values

Returns theMetadataStore object from the app's context.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

var appMetadataStore = appContext.getMetadataStore();

kony.sdk.mvvm.KonyApplicationContext.getModelMethod

Retrieves the specifiedmodel.

Syntax

getModel(

 entityName,

 serviceName,

 options);

Parameters

entityName

A string containing the name of themodel.

serviceName

© 2019 by Kony, Inc. All rights reserved 88 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

A string that contains the name of the object service that themodel in the entityName parameter

belongs to.

options

An object that defines the access options for themodel. The object contains one key, called "access",

which can have a value of either "online" or "offline".

Return Values

Returns the specifiedmodel.

Remarks

Apps based on theKony Reference Architecture SDK usemodels to abstract the access to data sources.

Data sources can include both local data storage on the device and remote data services that your app

accesses across the Internet. For each data source, there is amodel that provides a standardized interface

to the data source. This function returns themodel associated with a data source.

Example

var modelName = "MyModel";

var serviceName = "MyKony FabricSerice";

var serviceOptions = {"access":"online"};

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

var currentModel = appContext.getModel

(modelName,serviceName,serviceOptions);

kony.sdk.mvvm.KonyApplicationContext.getObjectServiceMethod

Retrieves the specified object service.

Syntax

getObjectService(

 options,

 objectServiceName);

Parameters

options

© 2019 by Kony, Inc. All rights reserved 89 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

A JavaScript object that specifies the access options for the service. The object contains one key,

called "access", which can have a value of either "online" or "offline".

objectServiceName

The name of the object service to retrieve.

Return Values

Returns the specified object service.

Example

var serviceName = "MyKony FabricSerice";

var serviceOptions = {"access":"online"};

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

var onlineObjSer = appContext.getObjectService(serviceOptions,serviceName);

kony.sdk.mvvm.KonyApplicationContext.init Method

Initializes an instance of a KonyApplicationContext object.

Syntax

kony.sdk.mvvm.KonyApplicationContext.init();

Parameters

None.

Return Values

None.

Remarks

Youmust call theinit method before you can use any other method that this object provides. If you do

not call this method first, all of the other methods of this class will return an error.

Your app calls this method directly by using its fully-qualified name.

© 2019 by Kony, Inc. All rights reserved 90 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Example

kony.sdk.mvvm.KonyApplicationContext.init();

kony.sdk.mvvm.KonyApplicationContext.logout Method

Performs a logout operation.

Syntax

logout(

 successCallback,

 errorCallback);

Parameters

successCallback

An event handler function that is called when the logout operation is successful.

errorCallback

An event handler function that is called when the logout operation results in an error.

Return Values

None

Remarks

This function clears all form controllers, models, and so forth from the KonyApplicationContext object's

application context. It then logs the app out of Kony Fabric services that it is logged into.

Example

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

appContext.logout();

kony.sdk.mvvm.KonyApplicationContext.showLoadingScreenMethod

© 2019 by Kony, Inc. All rights reserved 91 of 92

3. References Kony Reference Architecture SDK API Programmer's Guide
Version1.4

Displays a loading screen with the specified text.

Syntax

showLoadingScreen(

 text);

Parameters

text

A string containing the text to display

Return Values

None.

Remarks

You app calls this method when it needs to display a screen informing the user that data is loading. The

typical use case for this method is when your app is getting data from a remote service across the Internet.

This method displays the loading screen with themessage specified in the text parameter and then returns.

When the data is loaded, call the dismissLoadingScreenmethod to dismiss the loading screen.

Example

var text = "Quite please, I'm thinking..."

var appContext = kony.sdk.mvvm.KonyApplicationContext.getAppInstance();

appContext.showLoadingScreen(text);

© 2019 by Kony, Inc. All rights reserved 92 of 92

	1. Kony Reference Architecture API Programmers' Guide
	2. Overviews
	2.1 Kony Reference Architecture: Decoded
	2.2 Advantages of Using Kony Reference Architecture
	2.3 A Deeper Look at Kony Reference Architecture
	2.3.1 Views
	2.3.2 Controllers
	2.3.3 Models
	2.3.4 Views and Controllers
	2.3.5 Models and Controllers

	2.4 Kony Reference Architecture Features
	2.4.1 Models, Views, and Controllers in Action
	2.4.2 Components and Kony Reference Architecture
	2.4.3 Form Navigation
	2.4.4 Dynamic Module Loading
	2.4.5 Define Namespaces in Apps
	2.4.6 Access Kony Fabric Services through Kony Reference Architecture
	2.4.7 Use Kony Reference Architecture for Kony Wearables Apps

	2.5 Create an App with Kony Reference Architecture
	2.5.1 Build Your Front-End Client App
	2.5.2 Build Your App's Data Model
	2.5.3 Import Kony Quantum Visualizer Apps into Kony Visualizer Enterprise
	2.5.4 A Sample FormController

	3. References
	3.1 FormController Object
	3.1.1 FormController Events
	3.1.2 FormController Methods
	3.1.3 FormController Properties

	3.2 kony.model Namespace
	3.2.1 kony.model Constants
	3.2.2 kony.model Objects

	3.3 kony.mvc Namespace
	3.3.1 kony.mvc Functions

	3.4 kony.mvc.registry Namespace
	3.4.1 kony.mvc.registry Functions

	3.5 Navigation Object
	3.5.1 Navigation Methods

	3.6 TemplateController Object
	3.6.1 TemplateController Events
	3.6.2 TemplateController Methods
	3.6.3 TemplateController Properties

	3.7 Deprecated
	3.7.1 kony.sdk.mvvm Namespace

